

SCHOOL OF ARTS AND SCIENCE

MASTER OF SCIENCE IN CHEMISTRY

ACADEMIC REGULATIONS (R 2023) CURRICULUM AND SYLLABI

COLLEGE VISION AND MISSION

Vision

To be globally recognized for excellence in quality education, innovation and research for the transformation of lives to serve the society.

Mission

M1: Quality Education:

To provide comprehensive academic system that amalgamates the cutting edge technologies with best practices.

M2: Research and Innovation:

To foster value based research and innovation in collaboration with industries and institutions globally for creating intellectuals with new avenues.

M3: Employability and Entrepreneurship:

To inculcate the employability and entrepreneurial skills through value and skill based training.

M4: Ethical Values:

To instill deep sense of human values by blending societal righteousness with academic professionalism for the growth of society.

Department of Chemistry

Vision and Mission

Vision

To develop the department as world class centre of excellence in all aspects of higher education and research with an expertise in chemical sciences.

Mission

M1: Quality Education:

To inculcate quality inter-disciplinary training to improve the welfare of humanity.

M2: Practical knowledge:

To provide laboratory training in the field of chemistry in both public and private sectors.

M3: Research:

To educate our students for research to meet the global environmental issues

M4: Knowledge:

To produce graduates of International distinction, committed to integrity, professionalism and lifelong learning by widening their knowledge horizons in range and depth.

X2

S.S.h

Sl. No	Course Category	Breakdown of Credits
1	Discipline Specific Core Courses (DSC)	64
2	Discipline Specific Elective Courses (DSE)	16
3	Skill Enhancement Courses (SEC)	08
4	Internship	02
	Total	90

STRUCTURE FOR POSTGRADUATE PROGRAMME

SI.	Course Category		dits p	Total Credits		
No		Ι	Π	III	IV	
1	Discipline Specific Core Courses (DSC)	16	16	16	16	64
2	Discipline Specific Elective Courses (DSE)	4	4	4	4	16
3	Skill Enhancement Courses (SEC)	2	2	2	2	8
4	Internship	-	-	2	-	2
	Total	22	22	24	22	90

SCHEME OF CREDIT DISTRIBUTION - SUMMARY

S.S.h

	SEMESTER – I												
SI.	Correct Color	Correct Title	Category	P	Period	ls	Core litte	Max. Marks					
No.	Course Code Course Title			L	Т	Р	Credits	CAM	ESM	Total			
Theo	ory												
1	A23PCHT101	Inorganic Chemistry – I	DSC	4	0	0	4	25	75	100			
2	A23PCHT102	Organic Chemistry – I	DSC	4	0	0	4	25	75	100			
3	A23PCHT103	Physical Chemistry – I	DSC	4	0	0	4	25	75	100			
4	A23PCHE10X	DSE - I*	DSE	4	0	0	4	25	75	100			
Prac	tical												
5	A23PCHL101	Organic Chemistry Lab -I	DSC	0	0	4	2	50	50	100			
6	A23PCHL102	Inorganic Chemistry Lab – I	DSC	0	0	4	2	50	50	100			
Skill	Enhancement Cou	rse		•		•							
7	A23PCMS102	Professional Skills	SEC	2	0	0	2	100	-	100			
		·	First Se	emes	ter T	otal	22	300	400	700			

	SEMESTER – II												
SI.	Course Code	Course Title	Catagony	Periods			Credits	Max. Marks					
No.	Course Coue	Course Thie	Category L T P		Creats	CAM	ESM	Total					
Theory													
1	A23PCHT204	Inorganic Chemistry – II	DSC	4	0	0	4	25	75	100			
2	A23PCHT205	Organic Chemistry – II	DSC 4 0 0			0	4	25	75	100			
3	A23PCHT206	Physical Chemistry – II	DSC	DSC 4		0	4	25	75	100			
4	A23PCHE20X	DSE - II*	DSE	4	0	0	4	25	75	100			
Practi	cal								L				
5	A23PCHL203	Physical Chemistry Lab –I	DSC	0	0	4	2	50	50	100			
6	A23PCHL204	Inorganic Chemistry Lab – II	DSC	0	0	4	2	50	50	100			
Skill H	Enhancement Course	S											
7	A23PMAS201	Quantitative Reasoning and Research Aptitude	SEC	2	0	0	2	100	-	100			
		S	Second Sen	ieste	er T	otal	22	300	400	700			

*Discipline Specific Electives are to be selected from the list given in Annexure I

		SEMESTE	R – III							
SI.	Course Code	Course Title	C	Periods			Credits	Μ	lax. Mar	ks
No.	Course Code	Course Thie	Category	L	Т	Р	Credits	CAM	ESM	Total
Theory	, V									
1	A23PCHT307	Inorganic Chemistry – III	DSC	4	0	0	4	25	75	100
2	A23PCHT308	Organic Chemistry – III	DSC	4	0	0	4	25	75	100
3	A23PCHT309	Physical Chemistry – III	DSC	4	0	0	4	25	75	100
5	A23PCHE30X	DSE - III*	DSE	4	0	0	4	25	75	100
Practic	cal									
6	A23PCHL305	Organic Chemistry Lab - II	DSC	0	0	4	2	50	50	100
7	A23PCHL306	Physical Chemistry Lab - II	DSC	0	0	4	2	50	50	100
Skill E	nhancement Courses									
8	A23PCHS302	Advance Research Methodology In Chemistry	SEC	2	0	0	2	100	0	100
Intern	ship				_					
9	A23PCHN301	Internship	DSC	0	0	4	2	40	60	100
			Third Sem	este	r To	otal	24	340	460	800

*Discipline Specific Electives are to be selected from the list given in Annexure I

X2

\$. \$. h

		SEMEST	ER – IV								
SI.	Course Code	Course Title	Category	Periods			Credits	Max. Marks			
No.	Course Coue	Course The	Category	LT		Р	Creuits	CAM	ESM	Total	
PROJECT											
1	A23PCHT410	Organic Chemistry – IV	DSC	4	0	0	4	25	75	100	
2	A23PCHT411	Physical Chemistry – IV	Chemistry – IV DSC 4 0 0				4	25	75	100	
3	A23PCHE40X	HE40X DSE - IV*				0	4	25	75	100	
Practic	al										
4	A23PCHL407	Industrial Chemistry Lab - II	DSC	0	0	4	2	50	50	100	
PROJE	ECT										
5	A23PCHP401	Project Work	DSC	0	0	10	6	40	60	100	
SKILL	ENHANCEMENT	COURSES									
6	A23PCHS403	Health Science	SEC	2	0	0	2	100	-	100	
			Fourth Se	mes	ter]	Fotal	22	265	335	600	

*Discipline Specific Electives are to be selected from the list given in Annexure I

X2

S.S.h

г

Annexure I

DISCIPLINE SPECIFIC ELECTIVE COURSES*

Discij	Discipline Specific Elective – I (Offered in Semester I)											
Sl. No.	Course Code	Course Title										
1	A23PCHE101	Industrial Products										
2	A23PCHE102	Material Science										
3	A23PCHE103	Chemistry Of Heterocyclic And Natural Products										

Discij	Discipline Specific Elective – II (Offered in Semester II)											
Sl. No.	Course Code	Course Title										
1	A23PCHE204	Cheminformatics										
2	A23PCHE205	Asymmetric Synthesis										
3	A23PCHE206	Green Chemistry										

-

<u> </u>	Chemistry	Programme	: M.Sc. (Chemist	ry							
Semester	First	Course Cate	gory Co	ode: DS	C *End Se	mester	Exam Ty	pe: TE				
Course Code	A23PCHT101	Periods/We	ek		Credit	Ma	aximum	Marks				
course coue		L	Т	P	С	CAM	ESE	TM				
Course Name	INORGANIC CHEMISTRY - I	4	-	-	4	25	75	100				
Prerequisite	Basic Knowledge studied in the UG	G Level	t			i						
	To study the periodic table and	d atomic structu	re.									
	• To know the chemistry of cova	alent bond.										
Course	• To study the cement, glass an	d ceramics.										
Objectives	 To analyze the transition and inner transition elements. 											
Objectives	To acquire knowledge about the second s	ne different nucl	ear react	ions and	application	S						
	On completion of the course, th	e students will	be able	to			BT Map (Highest I					
	CO1 Comprehend the electronic elements						К3					
Course	se Apply the concepts of VB, MO and VSEPR theory to determine the structure K3 of molecules											
Outcome	CO3 Illustrate acid-base concept on acid base strength	ts, its measures	and to e	valuate v	arious effe	cts	К3					
	CO4 Students should able to lea elements and their applicat		emistry o	f inner tra	ansition		К3					
	CO5 Understand nuclear Chemi	stry					К3					
UNIT-I	ATOMIC STRUCTURE AND P	ERIODIC TAE	BLE		Periods:	12						
functions and quantum numbe Electronic config	on atomic structure: wave mecha orbital energies, angular funct rs– Aufbau principle – Zeeman Eff juration - Electron Angular moment tion of and radii of atoms anior ons.	ions and orbi tect - Stability o tum in atoms Ef	tal shap f ha fective r	es. Qua alf-filled a nuclear	antum numl and comple charge- SI	bers - Tl tely fillec ater rule	neories of l orbitals- and their	-				
· · ·	COVALENT BOND				Periods:	12						
								L				
hybridization a molecular orb approximation diagrams of h	logies: shared and lone pairs and and geometry, VSEPR model, itals formed from atomic orbi (SCF), LCAO- MO model, TASO, omo diatomic and hetero dim is in metals, band theory of metal	and Bent's ru tal overlap, LUMO, and H uclear molecu	ILE. Mole Extende IOMO co Ies (CO	electroni ecular C d Huck oncepts , NO, a	c and isola Drbital The cel theory in bonding and HCI). E	able rela eory: Sy of Ha g. MO e Bonding	mmetry rtree-Foo nergy lev in metal	of ck vel ^{s:} coo				
hybridization a molecular orb approximation diagrams of h packing of atom	and geometry, VSEPR model, itals formed from atomic orbi (SCF), LCAO- MO model, TASO, omo diatomic and hetero dinu	and Bent's ru tal overlap, LUMO, and H uclear molecu s and metallic	Ile. Mole Extende IOMO co Ies (CO propertie	electroni ecular C d Huck oncepts , NO, a es, insul	c and isola Drbital The cel theory in bonding and HCI). E	able rela eory: Sy of Ha g. MO e Bonding I semico	mmetry rtree-Foo nergy lev in metal	of ck vel ^{s:} coo				
hybridization a molecular orb approximation diagrams of h packing of atom UNIT-III Acid-Base theori base strength, F Hard and Soft ac and uses of solv	and geometry, VSEPR model, itals formed from atomic orbi (SCF), LCAO- MO model, TASO, omo diatomic and hetero dinu- is in metals, band theory of metal ACID- BASE THEORY AND SO es: Bronsted-Lowry, Lux-Flood, Usa factors affecting the strength of ac cids and bases – symbiosis – theor rents – protic, aprotic, superacids, n . Typical reactions in non–aqueous	and Bent's ru tal overlap, LUMO, and H uclear molecu s and metallic DLVENT SYST anovich, Lewis a ids and bases of etical basis of h molten salts as solvents-liquid	Ile. Mole Extende IOMO co Ies (CO propertie EMS and solver Common ardness solvents, HF, liquid	electroni ecular C d Huck oncepts , NO, a es, insul nt system ion effer and softr ionic liqu	c and isola Drbital The cel theory in bonding and HCI). E lators, and Periods: n definitions ct and Hen ness. Class uids (gel eff	able rela eory: Sy of Ha g. MO e Bonding I semico I semico 12 , measure derson's ification, fects) pro	mmetry rtree-Foo nergy lev in metal onductors es of acid equation properties operties o	of ck /el s [:] CO2				
hybridization a molecular orb approximation diagrams of h packing of atom UNIT-III Acid-Base theori base strength, F Hard and Soft ac and uses of solv ionizing solvents UNIT-IV	and geometry, VSEPR model, itals formed from atomic orbi (SCF), LCAO- MO model, TASO, omo diatomic and hetero dinu- is in metals, band theory of metal ACID- BASE THEORY AND SC es: Bronsted-Lowry, Lux-Flood, Usa factors affecting the strength of ac cids and bases – symbiosis – theor rents – protic, aprotic, superacids, i	and Bent's ru tal overlap, LUMO, and H uclear molecu s and metallic DLVENT SYST anovich, Lewis a ids and bases of etical basis of h molten salts as solvents- liquid SITION ELEM	Ile. Mole Extende IOMO co Ies (CO propertie EMS and solver Common ardness solvents, HF, liquid ENTS	electroni ecular C d Huck oncepts , NO, a es, insul nt system ion effe and softr ionic liqu d SO ₂ , lic	c and isola Drbital The cel theory in bonding and HCl). E lators, and Periods: the definitions ct and Hen ness. Class uids (gel eff quid NH ₃ , ar Periods:	able rela eory: Sy of Ha g. MO e Bonding I semico 12 ,measure derson's ification, fects) pro-	ermmetry rtree-Foo nergy lev in metal onductors es of acid equation properties operties o uric acid.	of ck /el s: CO2				

S.S.N

lanthanide contraction: causes and consequences - gadolinium break, shift reagents - extraction of thorium and **CO4** uranium- comparison of actinides and lanthanides.

UNI	Γ-V	NUCLEAR C	HEMISTRY		Periods: 12	
fissior Calcu Coun Applic	n. Fissile a lation of (ter, Cerer cations: Ac	nd Fertile isoto Q-values – Cro nkov Counter- ctivation analysi	pesNuclear fusion – stella oss section. Detectors: Sci Accelerators: Cyclotron, S	ar Energy-Nuclear forces: L ntillation counter, Gas lor Synchrocyclotron, Betatro e-radiometric titration. Nu	-fission and fusion. Theories of Liquid drop model, shell Model- nisation chamber. Proportiona on. Radio isotopes and their clear reactors: Types (Thermo aterials waste disposal.	. CO 5
Lect	ure Perio	ods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60	
	Books					
	Cotton, F		, G.; Murillo, C. A.; Bochm		Row:New York, 4 th Edition,1983 ganic Chemistry", Wiley Inters	
3.			"Inorganic Chemistry" Saur	nders: Philadelphia, 2nd E	dition, 1976	
Refer	ence Bool	(S				
		-	hemistry, A Modern Introduc P. W.; Langford, C. H. "Inc	-	ork, 1982. ed.; Oxford UniversityPress: L	ondon,
	West, A. I	R. Solid State C	Chemistry and its Application	ns, John Wiley & Sons: Ne		
5.	Rhodes, (G. Crystallogra	ohy Made Crystal Clear; Aca	ademic Press, Inc.: New Y	ork,1993.	
Web	Reference	S				
1.	https://np	otel.ac.in/				
-	1.11 11					
2.	-	w.mit.edu/cour	ses/chemistry/			

3. https://swayam.gov.in

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Conti	nuous Assess	essment Marks (CA	M)	End Semester	Total
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

S.A.h

Department	Chemis	stry	Programme	e: M.Sc.	Chemi	stry			
Semester	First		Course Cat	egory C	ode: D	sc *End Se	mester	Exam Ty	pe: TE
Course Code	A23PC	CHT102	Periods/We	eek		Credit	Ma	ximum	Marks
			L	Т	Р	С	CAM	ESE	TM
Course Name	ORGA	NIC CHEMISTRY - I	4	-	-	4	25	75	100
Prerequisite	Basic H	Knowledge studied in the UG	Level	I	L			<u>.</u>	I
	• To	learn basic organic mechanis	sm and study	the rate la	aw				
		analyze various types of rear	-		~ • •				
-		understand about oxidation a	-		n the or	ganic compo	ounds		
Course		study the stereochemistry w				3			
Objectives		evaluate the design and synt			ompoun	ds			
		npletion of the course, the		<u> </u>	•		BT Mapp	ing(Highes	t Level)
	CO1	Recall the basic principles	of organic rea	action me	chanisr	n and rate		К3	
	COI	law	-					-	
Course	CO2	Understand the various type	-					К3	
Outcome	CO 3	Categorize the reaction ba	used on oxida	tion and	reduct	ion.	К3		
Outcome	CO 4	predict the reaction mechan stereochemistry of organic of		К3					
	CO 5	Design and synthesize new	v organic con	npounds	by corr	elating the		К3	
UNIT-I	MECH	stereochemistry of organic				Periods:	10		
-		agents and reactions. Them							
mechanism: Nor evidences; isoto rate law and rate	n-kinetic pic effec constar	nond postulate; microscopion methods: identification of p cts; cross-over experiments, nts; relation of rate with the m	roducts and i trapping of i nechanism of r	ntermedia ntermedia	ates; iso	otopic labell	ing; stere ds- deter	o chemic	al
UNIT-II I	TEARR	ANGEMENT REACTIO	N9			Periods:	12		
migratory aptitud Meerwin and rel Neber, Baeyer-\	e and m ated rea Villiger,	s: Nucleophilic; free radical a lemory effects, ring enlarger actions, Benzil- benzilic acid, Stevens. Claisen rearrang , Arndt- Eistert synthesis.	nent and ring , Favorskii, H	contractio	on rearr and relat	angements. ted rearranç	Reaction gements,	s: Wagne Beckman	er- in,
UNIT-III	OXIDA.	TION AND REDUCTION	REACTIO	NS		Periods:	12		
intermediates. O and dehydrogena oxidative decarb	xidation ation of a oxylatior	tron transfer, hydride transfer Reactions: Aromatization of amines; Reactions involving n. Reduction Reactions invol Removal of Oxygen from su	six membere cleavage of C ving replacen	d rings; c - C bonds nent of ox	dihydro e s; ozono kygen b	elimination; blysis; cleav; y hydrogen:	oxidation age of dou - Wolff k	of alcoho uble bono Kishner ai	ols Is;
UNIT-IV	STER	EOCHEMISTRY-I				Periods:	12		I
Optical isomeris	m (due to asymmetric carb	on atoms Ra	acemic	modifica			; therm	al,
anion, cation, rev	versible	formation Epimerisation; mut asymmetric transformations thesis. Criteria for optical pu	arotation; I ar	nd II order synthesis	r asymn s destrug	netric transfe	ormations	Resolutio	on Is

×2

S.S.T

UNIT-V	STEREOCH	EMISTRY-II		Periods: 12	
Curtin-Hamm conformation decalins and octant rule;	net principle. Stal and reactivity in Brett'srule. optica configuration and	bility of six and seven-mo cyclohexane systems. Fu al rotation and optical rotat	embered rings; mono a sed and bridged rings; b cory dispersion; conforma ct; axial haloketone rule;	eighbouring group participation nd disubstituted cyclohexanes bicyclic and polycyclic systems tional asymmetry, ORD curves Determination of configuration	; ; CO
Lecture Pe	riods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60	.
Text Books					
3. E.L. Eliel	, Stereochemistry	d Structure in Organic Chen of Carbon Compounds, Tat		Vinston Inc.,1959.	
Reference Bo	ooks				
		y, 3rd edition, New Age Inter			
3. F.A. Car	• •	ry, Vol-1, 6th edition, Pearso dberg, Advanced Organic (4th edition, Kluwer Academic/	Plen
Publishe					
	nces				
Web Referer 1. https://bit	nces t.ly/3zT4PUq ww.organic-chemis				

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3 3 3 3 3					3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	essment Marks (C	CAM)	End Semester	Total
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	.0	5	5	5	75	100

S.S.in

Department	Chem												
Semester	First												
Course Code	423P	CHT103	Periods/Wee	k		Credit	Ma	aximum	Marks				
			L	T	Р	C CAM ESE							
Course Name	PHYS	ICAL CHEMISTRY - I	4	-	-	4	25	75	100				
Prerequisite	Basic	Knowledge studied in the U	G Level					1	i.				
		study the fundamental pupications	rinciples of Quar	tum Cl	hemistry,	Schroding	er wave	equation	and it				
Carrier		expose the ideas on theorie											
Course Objectives		To give an in-depth knowledge on thermodynamics											
Objectives		To understand the concepts of statistical thermodynamics To give insight into the applications of the M-B, B-E and F-D statistics.											
		give insight into the applica				ISTICS.	NT NA	• / 1					
		•			0		вт імарр	ing(Highes	t Level)				
	CO1 Identify the limitations of classical mechanics K3												
Course	CO2 Apply the quantum chemistry to solve the Schrödinger wave equation K3 for one, two and three dimensional box												
Outcome	CO3 Gain knowledge on theories of reaction rates and applications of K3 reaction kinetic chemistry												
	CO4	Illustrate the relationship be atoms and molecules with and derive the different type	individual servables	ual K3 les									
	CO5	Derive thermodynamic func	tions in terms of p	artition	functions	\$		К3					
UNIT-I	QUAN	TUM CHEMISTRY				Periods:	12						
theory of hydro Wave equation mechanics, wel Verification of communication	gen ato n, Deriv I behav operat relatior	al mechanics, Black body ra om: Hydrogen spectra, de B ation of time dependent a ed function- orthogonality ar tors Hamiltonian - Eigen ns, related theorems. Applic dimensional, distortion of t	roglie principle, U and independent ad normalization. functions and ations of wave m	ncertair Schrod Operato Eigen echanio	nty princi inger eq or algebra values, cs to sim	ple, Inadequ uation- Pos a: operator, angular m ple systems	uacy of E stulates of linear and omentum s – partic	Bohr theor of quantu d hermitia n operato le in a bo	y. m n, or, ^{xx} , co1				
									:				

Theories of reaction rates and reaction mechanism - Arrhenius equation -Potential energy surfaces and reaction coordinates - Collision theory – ARRT(thermodynamic treatment only)–Applications of ARRT to unimolecular, bimolecular and termolecular reactions - Kinetic isotope effect, iso kinetic relation and temperature - Theories of unimolecular reactions – Lindemann and RRK - Principle of microscopic reversibility-Steady state approximation Chain reactions. Thermal and photochemical reactions between hydrogen and halogens – Explosions and hydrogen – oxygen reactions.

UNIT-III CHEMICAL KINETICS – II

Periods: 12

Application of ARRT to solution kinetics - Factors affecting reaction rate in solution-. Internal pressure - Solvent dielectric constant - Ionic strength -Hydrostatic pressure - Ion-dipole and dipole-dipole reactions – van't Hoff equation and volume of activation - Catalysis Characterics of a catalyst –Factors affecting Catalytic reactions - Types of Catalysis - homogeneous catalysis – Acid base catalysis – Van't Hoff and Arrhenius intermediates-Mechanism - protolytic and prototropic catalysis laws - Acidity functions -Hammett - Zucker hypothesis - Catalysis in biological systems. Michaelis -menten equation – Lineweaver - Burk and Eadie-Hofstee plots - influency of substrate concentration, pH, and temperature on rate - Influence of substituent's on reaction rates – Hammett and Taft equations - Linear free energy relations.

S. Ain

UNIT-IV FUNDAMENTALS OF STATISTICAL THERMODYNAMICS Periods: 12

Statistical method - microstates- macro states - permutations and combinations – combinatory rule - probability theorems - ensembles - phase space - thermodynamic probability - statistical equilibrium - Maxwell Boltzmann statistics - derivation of M.B. statistics - relationship between entropy and probability - heat capacity of solids - **CO4** Einstein and Debye models - statistical meaning of third law of thermodynamics.

UNIT-V APPLICATIONS OF STATISTICAL THERMODYNAMICS Periods: 12

Partition functions - molar- translational- rotational and vibrational partition functions of diatomic and polyatomic molecules - separation of partition function according to forms of energy-partition function and vibrational energy - total partition function - electronic partition function-derivation of thermodynamic quantities E, S, A, H, G, K and Cp, Cv using partition function-Sackur-Tetrode equation - Bose - Einstein statistics - Fermi - Dirac statistics - electronic heat capacity of gases - equipartition of energy - classical and quantum statistical theory of heat capacities - heat capacities for diatomic molecule - rotational heat capacity of hydrogen molecule - nuclear spin statistics - nuclear spin entropy- quantum statistics

Lecture Periods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60
T . I D			

Text Books

R.K.Prasad - Quantum Chemistry - New Age International (P) Ltd. Publishers, New Delhi, 3rd Edition 2006.
 Puri, B.R. and Sharma, L.R. and Madan S.Pathania, "Principles of Physical Chemistry", Vishal Publishing 48th Edition, 2021

3. B.G.Kyle - Chemical and Process Thermodynamics - Prentice Hall of India, 3rd Edition, 2004. **Reference Books**

- 1. Ira N. Levine Quantum Chemistry Prentice Hall of India, New Delhi, 5th Edition, 2006
- 2. KeithJ.Laidler Chemical Kinetics Pearson Edition Company Pvt. Ltd., Third Edition, 2005.
- 3. M.C.Gupta Statistical Thermodynamics New Age International, 2nd Edition, 2003.
- 4. R.C.Srivatsava, Subit K. Saha, Abhay K. Jain Thermodynamics: A Core Course PHC Pvt. Ltd., 2nd Edition, 2005.

Web References

- 1. https://chem.libretexts.org/Courses/MountRoyalUniversity/Chem1201/Unit1%3AQuantumChemistry
- 2. http://www.yorku.ca/stynes/kindvs309.pdf
- 3. https://sites.krieger.jhu.edu/jared-kaplan/files/2018/11/StatisticalMechanicsNotes.pdf

COs/POs/PSOs Mapping

COs		Program	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High Evaluation Method

	Continuous Assessment Marks (CAM)				End Semester	Total	
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

S.A.h

Department	Chem												
Semester	First		Course Ca	itegory	Code: D	se *End S	emester	Exam Ty	pe: TE				
Course Code	A23P	CHE101	Periods/\	Neek		Credit	Ma	ximum	Mark				
			L	Т	P	С	CAM	ESE	TM				
Course	INDUS	STRIAL PRODUCTS	4	-	-	4	25	75	100				
Name													
Prerequisite	Basic	Knowledge studied in the UG	Level	<u>.</u>	. <u>.</u>								
	• To	acquire the knowledge on cer	ment and glass	manufa	cturing								
	• To	study the paints manufacturin	g and various o	constitue	ents								
Course	• To	know chemistry of fiber, plast	ic and rubber										
Objectives	• To	study the industrial gasses ar	nd petroleum pr	oducts									
Objectives	• To	analyze the various cosmetic	s products.										
	On co	mpletion of the course, the s	students will b	e able t	0		ВТ Марр	ing(Highes	st Level				
	CO 1	Understand the manufactur physicochemical properties	e processes (of ceme	ent, glas	ss their		К3					
	CO 2	Able to classify dyes, pigmen			К3								
Course	CO3 Understand the importance of plastic and fibers. K3												
Outcome	CO 4	Explain the petroleum and fue	el gases and ap	plication	ns of fert	tilizers.		К3					
	CO5	Illustrate the preparation a detergents.	nd uses of s	hampoo	o, dye,	soap and		К3					
UNIT-I	CEME	NT AND GLASS				Periods:	12						
Cement - analys	sis of ma	jor constituents, Composition, d	lifferent method	ls of ma	nufactur	ing and use	s - Portlar	nd cemer	nt -				
Composition, d	ifferent	methods of manufacturing (W	et and Dry pro	cess), u	ises – S	Setting and h	nardening	of ceme	nt,				
Glass- Compo	osition,	Types of glasses, method of	f manufacturin	g - Mel	ting, Blo	owing, Pres	sing, Anr	ealing a	nd co				
inishing- chemi	ical and	physical properties of glass.							0				
UNIT-II	PIGMI	ENTS, DYES AND PAINTS)			Periods:	12		i				
Paints - Primar	v consti	tuents of paints, Composition	. Types. Manuf	acture a	and testi	ng of Paints	. Dispersi	on mediu					
		nents, formulation of paints.											
	,	Dyes - Classification, prepara		ocesses	•								
UNIT-III	FIBER	RS, PLASTICS AND RUBB	ER			Periods:	12						
- ibres – definit	tion - di	ifference between Natural an	d synthetic fib	res-prop	erties o	f synthetic	ibres - A	rtificial si	ilk,				
rayon, nylon a	nd Tery	lene Plastics - composition,	Classification,	manufa	icture, p	roperties ar	nd uses r	ecycling	of				
plastics Rubber	: types	of rubber-synthetic rubber- na	atural rubber - V	/ulcaniz	ations of	f Rubber- pi	operties a	and uses	of CO				
ubber.													
UNIT-IV	FER	FILIZERS AND FUELS				Periods:	12						
ertilizers -Type	es of Fe	ertilizers: Organic and Inorgani	ic fertilizers, Pr	eparatio	n and us	ses, Fuel Ga	ases: coal	gas, wat	ter co				
gas, producer g	gas, an	d oil gas. Petroleum: synthet	ic petrol manul	acturing	, refinin	g, cracking,	reforming	g, knocki	ng ℃				
and octane nun	nber, LF	°G.											
	COSN	IETICS				Periods:	12						
UNIT-V													
UNIT-V		and its preparation linstick -r	preparation Fa	ce crear	n and fa	ce powder o	compositio	on and th	eir				
JNIT-V Shampoo- com	position	and its preparation, lipstick -r - chemical and herbal dyes. F											

S.S.T

Lecture Periods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60
Text Books			•••••••
2. Joseph Henry Stephensor	xt Book on the Chemistry and	use, 6տ Edition, 2011. eopold Classic Library, 1տ Editio Agriculture of Teall, Franklin C	
Reference Books			
2. P.P.Singh, T.M.Joseph, R 1983.	.G.Dhavale, "College Industri	olishing Co, New Delhi, 4th Editi al Chemistry", Himalaya Publisl gotia publication Pvt. Ld, 1st Ed	hing House, Bombay, 4th Edition
Web References			
2. https://www.britannica.cor	ides/business-environment/sc n/science/pollution-environme m/our-products-and-services/		dustries/

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2 3		2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	essment Marks (C	CAM)	End Semester	Total
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

S.Sib

properties of la complexes Guo UNIT-III X-ray diffraction types, glid plane density – phase measurement te UNIT-IV Ceramics – type glasses types, g	by sines and see proble echnique CER glass – g	gle crystal, space groups – crew axis- x-ray intensities, s em. Electron diffraction by g e. Neutron diffraction by cryst AMICS application – composites – c glass forming ability of alloys tion (bottom up and top dow	structure factor ases – scatteri als – magnetic classification – p – melt spinning	R-value ng inten scatterin processin process) and its sity vs ng – mea ng of fib s – appli	relation to i scattering a asurement te Periods: er Reinforce cations – sh	ntensity a ngle, wier echniques 12 ed plastics ape mem	nd electro 1 equatio s – metal ory effect	ic	
properties of la complexes Guo UNIT-III X-ray diffractior types, glid plane density – phase measurement te UNIT-IV	by sin es and s e proble echnique	AMICS	structure factor ases – scatteri als – magnetic	R-value ng inten scatterin) and its sity vs ng – mea	relation to i scattering a asurement te Periods:	ntensity a ngle, wier echniques 12	nd electro 1 equatio	on n, CO3	
properties of la complexes Guo UNIT-III X-ray diffractior types, glid plane density – phase measurement te	h by sin es and s e proble echnique	crew axis- x-ray intensities, s em. Electron diffraction by g e. Neutron diffraction by cryst	structure factor ases – scatteri	R-value) and its sity vs	relation to i scattering a asurement te	ntensity a ngle, wiei echniques	nd electro I equatio	on n,	
properties of la complexes Guo UNIT-III							antificatio	e	*****	
properties of la complexes Guo	III X-RAY DIFFRACTION Periods: 12							-		
		nod spin crossover in co-ordi	nation compoun	ds	T	.	10			
	anthanic	les and actinides - orbital	contribution to	magne						
		s of inorganic compounds ter			-			•		
		Dia – Para – Ferro and anti Effect – states KT – States,	•	•	•	•				
			· · · · · · · · · · · · · · · · · · ·	- NA	atia					
	and pe	t structure types in Solid – ro rovskite structures. IETIC PROPERTIES	ock salt, ∠inc bl	ende wi	irzite, flu	Periods:		spinel ar	rd CO1	
and KCI only), cubic lattice a	Powder nd inde	and single crystal – method exing of the x-ray diffraction	ls and its applic on lines Radius	ation wi s ratio	th NLO rules –	properties - co-ordination	- Identifica on numb	ation of th er packin	ne ng	
		Crystalline and Amorphous u	init cell - Brava	is lattico	and v-r			ation (No	CI	
UNIT-I		CTURE OF SOLIDS	0,1		T	Periods:	12	NJ		
	CO3 Harvest solar energy in the energy production. K3									
Outcome	CO3Utilize ceramics and nanomaterials in the scientific applicationsK3									
Course		CO3 Apply the x-ray diffraction in the study K3								
_	ഹാ	lattice structure Analyze the magnetic proper	rties of the mate	erials				К3		
	CO 1	Understand X-ray structure	e determinatior	n and io	dentifica	ition of		K3		
	On cor	npletion of the course, the	•				BT Mapp	ng(Highes	t Level)	
Objectives	•	To learn about the important								
Course Objectives	•	To study the synthesis, class		-			and mugh	~		
C	•	To explain the optical, dieled				vity materials and magnets				
	•	To understand the crystal st				•	ıy			
		-		mathad		rov coottoria	~			
Name Prerequisite	Basic	Knowledge studied in the UG	level							
Course			4	-	-	4	25	75	100	
C		RIAL SCIENCE	L	l	P	C	CAM	ESE	TM 100	
	A23P0	CHE102	Periods/\	Neek		Credit	-			
Course Code	First		Course Ca	itegory	Code: E					
Semester Course Code		istrv			e: M.Sc. Chemistry gory Code: DSE *End Semester Exam Type: TE					

S.S.h

UNIT-V	SUPER CONDUCTORS Periods: 12						
thermal conv	ersion, Solar e		olar thermal energy collection	lar energy materials – Photo n – photovoltic conversion – CO5			
Lecture Pe	riods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60			
Text Books							
 Arumugam Giacavaz Publications, Reference Bc 	n, Materials Scien zoet. al., Fund 2010 poks	Principles of Materials Scie nce, Anuradha Publications, lamentals of Crystallograp	2007. hy, International Union of	Crystallography. Oxford Science			
2. James F				Is Science for Engineers. 6th ed.,			
		ls Science, Scitech Publicati Is Science, Charulatha Publi					
Web Referen	ICES						
2. http:/		ou.edu/notes/symmetry.html /classroom-content/data/unit R					

COs		Progra	m Outcome	Program Specific Outcomes (PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		End Semester	Total				
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

S.Sib

Department	Chemistry	Program	me: M.S	Sc. Che	mistry			
Semester	First	Course Ca	itegory	Code: D	SE *End S	Semester	Exam Ty	pe: TE
Course Code	A23PCHE103	Periods/\	Neek		Credit	Ma	aximum	Marks
		L	Т	Р	С	CAM	ESE	TM
Course Name	CHEMISTRY OF HETEROCYCLICS AND NATURAL PRODUCTS	4	-	-	4	25	75	100
Prerequisite	Basic Knowledge studied in the UG Lev	el					-	
Course Objectives	 To Classify heterocyclic - nomenclat and pharmaceutical perspectives of To elucidate the structure of alkaloid To study the biological importance of To learn about steroids with biological To know the structure and synthesis 	natural prod s of terpenes cal importa se of anthod	ducts nce cyanins		, occurrenc	e, analysi	3	
	On completion of the course, the stud					ВТ Марр	ing(Highes	t Level)
	CO1 Understand the basic concepts of				products.		К3	
Course	CO2 Integrate and assess the different methods of preparation of K3 structurally different natural products.							
Outcome	CO3 Illustrate the applications of biomolecules and their functions in the K3 metabolism of livingorganisms.							
	CO4 Analyse and rationalise the struct			of steroid	ls		К3	
	CO5 Analyze nature and structure of a	anthocyanir	าร				K3	
UNIT-I	HETEROCYCLIC CHEMISTRY				Periods:	12		
only – indole,	– reactivity – aromaticity – spectral , isoindole – oxazole, imidazole, t romons, coumarins, carbazoles, uraci	hiazole, p	yridines	s, pyrin	nidine, py	ridazine,		
UNIT-II	ALKALOIDS				Periods:	12		
	ods of structural elucidation of alkalo paverine, Cocaine, Atropine, Heptaph					tural elu	cidation	of CO2
UNIT-III	TERPENES				Periods:	12		I
	ods of determination of structure. Str		ucidatio	n of Ca	mphor, Ca	dinene,	Vitamin	A,
Abietic acid, G	Sibberelic acid, Zinziberine and Squal	ene						CO3
UNIT-IV	STEROIDS				Periods:	12		
Synthesis of s	s of stereoids - molecular rearrang steroids – ring forming reaction and c drogens, oestrone, progesterone and	ontrol of ri	ng junc	tion ste	ereochemi	stry. Syn	thesis of	

XZ

S.S.h

UNIT-V	IIT-V ANTHOCYANINS Periods: 12						
anthocyanid	ins. Structural e	nins – structure of the a elucidation of cyanidin c vones. Biosynthesis of f	hloride, pelargolidin c	hloride, H		CO5	
Lecture Periods: 60 Tutorial Periods:- Practical Periods:- Total Periods:60							
Text Books				<u>-</u>			
3. M. P. Si Ahluwali Reference Bo	ngh and H. Panda, a, Steroids and Ho ooks	ry Vol-2, 5 th edn, Pearson I Medicinal Herbs with their prmones, Ane books pub., N	formulations, Daya Publis New Delhi, 2009.		e, Delhi,2005. 6. V. K	•	
 Pelletier Shoppe, I. A. Khata 	, Chemistry of Alka Chemistry of the	stry Vol-1, 6thedition, Pears aloids, Van Nostrand Reinho steroids, Butterworthes, 199 n. Role of Biotechnology in 1 2004.	old Co, 2000. 94.		nd Vol10, Ukkaz		
Web Referen	ces						
2. https://	/bit.ly/39LXStz /www.organic-cher /www.studyorgo.cc	, ,					

COs		Progra	m Outcome	Program Specific Outcomes (PSC				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	End Semester	Total		
Assessment	CAT 1	CAT 2	Model Exam Assignment* Attendance		Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

S.Sib

Department	Commerce and Management	Commerce and Management Programme: M.Sc. Chemistry First Course Category Code: SEC *End Semester Exam Type:									
Semester	First	Course Ca	ategory	Code: SE	C *End S	emeste	er Exam T	ype:			
Course Code	A23PCMS102	Periods/	Week		Credit	M	aximum l	Marks			
Course Code		L	T	Р	С	CAM	ESE	TM			
Course	PROFESSIONAL SKILLS	2	-	-	2	100	-	100			
Name											
Prerequisite	Intra- personal skills and basic for con	nmunicatior	n skills								
	• To enable the students to unde	erstand the i	mportar	nce of Int	erpersonal	and Tear	n skills.				
1	To Acquire Different Interperso										
Course	To know how to communicate	in an emoti	onally in	telligent	way.						
Objectives	To identify needed information and/or eliminate extraneous information towards solving										
Objectives	To achieve the desired result of	f a good em	ployabili	ty throug	gh Team wo	rk.					
	On completion of the course, the stu	dents will b	e able t	0			BT Mappi (Highest Le	-			
CO1Remember the various Interpersonal skill requirements in organizational entry levelK3CourseCO2Understand the need for different communication skill requirement at Understand the need for different communication skill requirement atK3											
Course Outcome	different occasions		it at	K3 K3							
Outcome	CO3 Understand what Emotional Inte	lligence is a	nd why i	t is impo	tant		_				
	CO4 Demonstrate a good Problem solving skill in work environment K3										
	CO5 Demonstrate their ability in team			sired resu	ult		К3				
UNIT-I	INTRODUCTION TO INTERPERSO	DNALSKIL	L		Periods: 6	5					
	o Interpersonal skills – definition –										
	Skills – Types of Interpersonal relati										
	ing Interpersonal Relationships – He al relationships	ow to acco	mmoda	te differ	ent styles	- conse	equences	CO1			
					Periods: 6	5					
			.	1- 6	· · · · · · · · · · · · · · · · · · ·						
	 Meaning – Process of comm Non – Verbal communication – De 							CO2			
UNIT-III	EMOTIONAL INTELLIGENCE				Periods: (5					
	lligence, emotional quotient, ability		tand, us	se mana	ge own en	notions,	positive				
ways to relieve	e stress, empathy and resolving conf	flict.						CO 3			
UNIT-IV	PROBLEM SOLVING Periods: 6										
	Need for problem Solving – Skills blem solving –Methods of Problem so		m Solvi	ing –Pro	cess of Pr	oblem	solving –	CO 4			
UNIT-V	TEAM SPIRIT AND GROWTH				Periods: 6	5		i			
•	growth mindset, high performing and time compliance.	teams, t	rust an	d mind	alignmen	t, focus	s, target	CO5			

Text Books

- 1. 1. Brooks, Margret. Skills for Success. Listening and Speaking. Level 4 Oxford University Press, Oxford: 2011.
- 2. Richards, C. Jack. & DavidBholke. SpeakNowLevel3.OxfordUniversityPress, Oxford:2010

Reference Books

- 1. Bhatnagar, Nitin and Mamta Bhatnagar. Communicative English for Engineers and Professionals. Pearson: New Delhi, 2010.
- 2. Hughes, Glyn and Josephine Moate. Practical English Classroom. Oxford University Press:Oxford,2014.
 - $\label{eq:starger} 3. Vargo, Mari. Speak Now Level 4. Oxford University Press: Oxford, 2013.$

Web References

- 1. https://mrcet.com/downloads/MBA/Professional%20Communication%20Skills.pdf
- 2. https://www.drishtiias.com/pdf/emotional-intelligence.pdf

Evaluation Method

		Contir	nuous Asses	sment Marks (CAM) End Semester			
Assessment	CAT	CAT	CAT 3	Assignment*	Attendance	Examination (ESE)	Total Marks
	1	2				Marks	
Marks	70		20	10	-	100	

Department	Chem	Chemistry Programme: M.Sc. Chemistry										
Semester	First		Course Ca	tegory	Code: D	SC *End S	emester	Exam Ty	pe: PE			
Course Code	A23PC	CHL101	Periods/\	Veek		Credit	Ma	ximum	Marks			
			L	Т	Р	С	CAM	ESE	TM			
Course Name		NIC CHEMISTRY RATORY - I	-	-	4	2	50	50	100			
Prerequisite	Basic k	Basic Knowledge studied in the UG Level										
	•	To know the basic knowledge	of the separa	tion of	organicı	mixture						
Course	•	To Develop the skill on the identification of functional group										
Course Objectives	To improve practical knowledge on the preparation of organic compounds											
	To implement the Oxidation and reduction in the chemical reactions											
	•	To learn the method to introd				compounds						
	On con	npletion of the course, the st	udents will b	e able t	0		BT Mappi	ing(Highes	st Level)			
	CO1	Develop the knowledge on the	e separation of	f organi	c mixture	9		К3				
-	CO2	Identify the functional groups	in the organic	compo	unds			К3				
Course	CO 3	prepare organic compounds						K3				
Outcome	CO4	Understand Oxidation and red	uction in the o	hemica	l reactio	ns		К3				
	CO5	Add acyl group in the organic o	compounds					K3				
List of Exper	iments	5										
1. Identification	of comp	oonents in a two component mi	xture and prep	aration	of their o	derivatives.						
2. Preparations												
(i) p-N	litrobenz	oic acid from p-Nitrotoluene (C	Dxidation)									
(ii) Ant	hroquin	one from Anthracene (Oxidatio	n)									

- (iii) 1,2,3,4 Tetrahydrocarbazole from Cyclohexanone (Reduction)
- (iv) Methyl orange from Sulphanilic acid
- (v) Acetyl Salicylic acid (Aspirin) from Salicylic acid (Acetylation)
- (vi) m-nitro aniline from m-dinitrobenzene(Reduction)

Lecture Periods: -	Tutorial Periods:-	Practical Periods:-30	Total Periods:30
Reference Books			

S. Furniss Brain - Vogel's Textbook of Practical Organic Chemistry – Pearson Publication, 5th Edition, Reprint 2004.
 N.S. Gnanapragasam & G.Ramamurthy - Organic Lab Manual (Semi-Micro Qualitative Analysis and Separation) - S. Viswanathan (Printers & Publishers), Pvt., Ltd, Reprint 2002.

Web References

- 1. https://mis.alagappauniversity.ac.in/siteAdmin/dde-
- admin/uploads/2/PG_M.Sc._Chemistry_344%2024_Practical%20Organic%20Chemistry_MSc%20Chemistry.pdf 2. https://www.vedantu.com/chemistry/salicylic-acid

2

D.D.h

COs		Progra	m Outcome		Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

	Continuo	ous Asses	End Semester	Total		
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks
Marks	15	15	10	10	50	100

Department	Chemistry	Programme: M.Sc. Chemistry Course Category Code: DSC *End Semester Exam Type: PE										
Semester	First	Course Ca	tegory	Code: D	SC *End S	emester	Exam Ty	pe: PE				
Course Code	A23PCHL102	Periods/V	Veek		Credit	Ma	ximum	Marks				
Course Coue		L	T	Р	С	CAM	ESE	TM				
Course Name	INORGANIC CHEMISTRY LABORATORY - I	-	-	4	2	50	50	100				
Prerequisite	Basic Knowledge studied in the UG	sic Knowledge studied in the UG Level										
	• To know the basic principles	of semi micro	qualitati	ve analy	vsis							
-	To learn to indentify the common ions present in the mixture											
Course Objectives	To develop the practical know	wledge on the	prepara	tion of ii	norganic cor	nplex						
	• To know the method of estin	nation of meta	ion									
	• To improve the knowledge o	n the colorime	tric metl	hod								
	On completion of the course, the s	tudents will b	e able to	D		ВТ Марр	ing(Highes	st Level)				
	CO1 Demonstrate group separation	n and analysis	of inorga	anic mixt	ures		К3					
Course	CO2 Identify rare and common ions	s present in the	inorgan	ic mixtu	res		К3					
Outcome	CO3 Prepare selected inorganic co	mplexes					К3					
	CO4 Estimate the metal ions prese	nt in the sampl	e by colo	orimetric	method		К3					
	CO5 Identify the metal ion present	t in the solutior	1				К3					

List of Experiments

1. Semi micro qualitative analysis of mixture containing two common and two rare cations. (The following are the rare cations to be included. W, Te, Se, Ce, Th, Zr, Be, V, Mo, L.,)

- 2. Colorimetric Analysis using photoelectric method: Estimation of Iron, Nickel, Copper and Manganese.
- 3. Preparations:
 - Potassium tris(oxalato)aluminate(III) trihydrate i.
 - ii. Tris(thiourea)copper(I) chloride
 - iii. Sodium hexanitrocobaltate (III)
 - iv. Tetrammine copper(II) sulphate
 - v. Sodium cuprousthiosulphate

Lecture Periods: -	Tutorial Periods:-	Practical Periods:-30	Total Periods:30
Reference Books			
1 V/V Domonution Increa	nia Sami Miara Qualitativa An	alysis, The National Publication,	2rd Edition Poprint 2004
		arson Publication, 5 th Edition, Re	

S.A.h

- 1. https://iscnagpur.ac.in/study_material/dept_chemistry/4.1_MIS_and_NJS_Manual_for_Inorganic_semimicro_qualitative_analysis.pdf
- 2. https://archive.int.washington.edu/users/bertsch/articles/176.pdf
- 3. https://www.scribd.com/document/250411802/SKT1013-Experiment-4

COs		Progra	Program S	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

	Continuo	ous Asses	End Semester	Total		
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks
Marks	15	15	10	10	50	100

Department	Chem	nistry	Programm	e: M.S	c. Che	mistry					
Semester	Seco	nd	Course Ca	tegory	Code:	DSC *End	Semeste	r Exam T	ype: TE		
Course Code	V33D	СНТ20/	Periods/We	eek		Credit	Ma	ximum N	larks		
	_		L	Т	Р	С	CAM	ESE	TM		
Course Name	INOR	GANIC CHEMISTRY II	4	-	-	4	25	75	100		
Prerequisite	Basio	c Knowledge studied in the UG	Level								
	•	Advanced theories of bonding in complexes along with their stereochemistry									
0	•	Mechanisms of inorganic redox	reactions inv	olving	coordin	ation compo	ounds				
Course Objectives											
Course	CO 1		K3								
Outcome	elements CO2 Understand the structure and bonding in inorganic chains, rings, and cages.								K3		
	CO3	Identify ligands of main g agents for main group metals		ents	and c	omplexing		K3			
	CO4	Analyse the synthetic techniq	ues in inorg	janic d	chemis	try.		K3			
	CO5	Know about organo metallic co	mpounds-					K3			
UNIT-I	NATU	RE OF BONDING IN MAIN G		MENT	S			Period	s: 12		
shapes of AH bonding, Elec Catenation, p	H _n com tron de polyace	group compounds, Geometric apounds and A ₂ H _n compound eficient, electron precise, and etylene, Pierls Distortion, Zi ticity, 3-D aromaticity.	s. Hyperco electron rio	onjuga ch com	tion, I npounc	Multiple Bo Is of main	onding, N group ele	Iulticenti ments.	^e CO1		
UNIT-II	INOR	GANIC CHAINS, RINGS, AND	CAGES					Period	s: 12		

Chemistry of simple boranes, silanes, phosphanesand sulphanes–Boranes: synthesis of neutral boron hydrides, polyhedral borane anions and dianions.Carboranes: synthesis and polyhedral geometries, metalloboranes, and metallocarboranes - Boron – nitrogen compounds: azaboranes, borazines. Silicates: classification - orthosilicates, noncyclic silicate anions, cyclic silicate anions, infinite chain anions, infinite sheet anions, Structure of cyclic siloxanes and cyclopolysilanes.

UNIT-III COORDINATION CHEMISTRY - I

Stereochemical aspects, Stereoisomerism in inorganic complexes: Isomerism arising out of ligand distribution and ligand conformation; chirality and nomenclature of chiral complexes; optical rotatory dispersion and circular dichroism. Macrocyclic ligands; types; porphyrins; corrins, Schiff bases; crown ethers and cryptates.

UNIT-IV HALOGEN AND NOBLE GAS CHEMISTRY Periods: 12

Halogen oxides and oxocompounds: dichlorinemonooxide, chlorine dioxide, dibrominemonooxide, and iodine pentaoxide-preparation and properties; halogen oxyfluoridesand ionic oxyhalogenspecies. Xenon oxides and fluorides: xenon trioxide, xenon difluoride, xenon tetrafluoride. Halogen compounds of nitrogen: nitrogen trifluoride, tetrafluorohydrazine, dinitrogen difluoride, haloamines, oxohalides, andnitrogen trifluorideoxide. Sulfurfluorides: Synthesis and reactivity of disulfur difluoride, sulfurtetrafluoride.

S.A.D

Periods: 12

UNIT-V ORGANO	METALLIC COMPOUNDS			Periods:	12
organometallic chemist eactions of specific mol	unds: synthesis, bonding ry in catalysis, Co-ordina ecules- Hydrogen addition- C-C , C-Si and Si-Si bonds-	ative unsaturation, oxi HX addition- Addition o	dative addition, f X2, Addition re	addition actions of	CO5
	Tutorial Dariada, 45	Practical Periods:-	Total Per	iods:60	1
	Tutorial Periods:-15		i otar i er	1003.00	
	Tutorial Periods:-15		Total T er	1003.00	
 F. A. Cotton, G. Wilkinson, New York, 1988. J. E. Huheey, E. A. Keites, K. F. Purcell, and J. C. K. 	on, C. A. Murillo and M. Bochma er, and R. L. Keiter, Inorganic Ch fotz, Inorganic Chemistry; Saund	ann, Advanced Inorganic Cł nemistry; 4th ed.; Harper an	nemistry; 6th ed.; V	Viley Interse	cience
New York,1988. 2. J. E. Huheey, E. A. Keite	on, C. A. Murillo and M. Bochma	ann, Advanced Inorganic Cł nemistry; 4th ed.; Harper an	nemistry; 6th ed.; V	Viley Interse	cience
 F. A. Cotton, G. Wilkinson, New York, 1988. J. E. Huheey, E. A. Keites, K. F. Purcell, and J. C. K. Reference Books D. F. Shriver, P. W. Atking, T. Moeller, Inorganic Characteric 	on, C. A. Murillo and M. Bochma er, and R. L. Keiter, Inorganic Ch Cotz, Inorganic Chemistry; Saun ns, and C. H. Langford, Inorgani emistry, A Modern Introduction;	ann, Advanced Inorganic Ch hemistry; 4th ed.; Harper an ders: Philadelphia,1976. ic Chemistry; 3rd ed.; Oxford John Wiley: New York,1982	nemistry; 6th ed.; V d Row: New York, d University Press:	Viley Interso 1983.	
 F. A. Cotton, G. Wilkinson, New York, 1988. J. E. Huheey, E. A. Keites, K. F. Purcell, and J. C. K. Reference Books D. F. Shriver, P. W. Atking, T. Moeller, Inorganic Characteric 	on, C. A. Murillo and M. Bochma er, and R. L. Keiter, Inorganic Ch totz, Inorganic Chemistry; Saund	ann, Advanced Inorganic Ch hemistry; 4th ed.; Harper an ders: Philadelphia,1976. ic Chemistry; 3rd ed.; Oxford John Wiley: New York,1982	nemistry; 6th ed.; V d Row: New York, d University Press:	Viley Interso 1983.	

- https://bit.ly/3OtepkR
 https://bit.ly/3QyVg2R
 https://bit.ly/3zSu8pu

COs		Progra	m Outcome		Program Specific Outcomes (PSOs)				
	PO1	PO2	2 PO3 PO4 PO5		PSO1	PSO2	PSO3		
1	3	3	3	3	2	3	3	2	
2	2	2	2	2	3	1	3	3	
3	3	2	3	3	2	3	2	1	
4	3	2	2	3	2	2	3	2	
5	3	3	3	3	3	2	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

Assessment		Cont	inuous Ass	essment Marks (C	CAM)	End Semester	Total
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

S.A.h

Department	Chemistry	Programme	e: M.S	c. Che	mistry							
Semester	Second	Periods/Week Credit Maximum Marks										
Course Code	A23PCHT205	Periods/We										
		L	Т	P	С	CAM	ESE	TM				
Course Name	ORGANIC CHEMISTRY II	4	-	-	4	25	75	100				
Prerequisite	Basic Knowledge studied in the UG	Level			<u> </u>			-				
	 Mechanisms and evidences for reactions, elimination reactions and evidences. 				and nuleop	hilic subs	stitutions,	additio				
Course	Effect of substrate structure, leave	······································			pecies in the	above re	actions.					
Objectives	Understand the concept of arom			- 5-1								
-	Synthesis and applications of se		nts use	ed for va	arious organ	ic transfor	mations.					
	On completion of the course, the stud	<u> </u>				ВТ Маррі		st Level				
Course	CO1 Recall the basic principles of Elec	ctrophilic Sub	stitutic	on.			K3					
Outcome	CO2 Recall the basic principles of Nuc	cleophilic Sub	stitutic	n			K3	K3				
	CO3 Understand the mechanism of fre	ee radical rea	ction				K3					
	CO4 Describe the concept of aromatic	ity.					K3					
	CO5 Utilize the selected reagents used	d for various	organi	c transfo	ormations.		K3					
UNIT-I	AROMATIC AND ALIPHATIC ELEC	TROPHILIC	C SUB	STITU	TION		Perio	ds: 12				
reactivity in the Reactions invo Halogen electro reactions. Mec	ophilic substitution: Mechanism, orientatic substrates and reactivity of the electroph lving- Nitrogen electrophiles: nitrationanc ophiles: chlorination and bromination -C hanisms: SE2 and SE1, Substitution by c nanism with various electrophiles – Hydro	iles - Selecti d diazonium arbon electro double bond	vity rel couplir ophiles shifts	ationshi ng. Sulp s: Friede - other	bhur electro el-Crafts alk mechanism	and Taft e philes: sul ylation ar	equations. phonation nd acylation	on ¯¯¯				
UNIT-II	ELIMINATION AND FREE RADICA							ds: 12				
rules and applic orientation in p photochemical	2, E1, E1cB and E2C syn eliminate ior cations. Reactivity: Effect of substrate, att pyrolytic eliminations. Long - lived and a reactions, methods of detection, stabi tutions and rearrangements.	tacking bases short-lived ra	s, leavi adicals	ing grou - Prod	up and medi luction of ra	um. Mech Idicals - t	anisms ar hermal ar	าd าd CO2				

 UNIT-III
 ADDITION TO CARBON-CARBON MULTIPLE BONDS
 Periods: 12

 Addition reactions – Mechanisms - electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms.
 Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and nitrogen. Addition to carbon-hetero atom multiple bonds - Mannich reaction, acids, esters, nitrites, addition of Grignard reagents, Wittig and Prins reactions. Stereochemical aspects of addition reactions - Addition to carbon CO3

unsaturated carbonyl compounds.
UNIT-IV AROMATICITY Periods: 12

hetero atom multiple bonds: Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl and

Aromaticity of benzenoid – non-benzenoid and heterocyclic compounds-Huckel's rule- aromatic, non- aromatic and anti- aromatic systems .- System of two (cyclopropenyl cation, cyclobutadienyl cation etc,), four(cyclopropenyl anion, cyclobutadiene, cyclopentadienyl cation etc,), six (benzene, pyridine, pyrrole, thiophene, furan etc,) eight (cyclooctatetraene etc,) and ten electrons (annulene [10] etc,). System with more than 10 pi electrons (4n+2 & 4n system)- Annulene up to C-18. Aromaticity Azulene- homoaromatic compounds.

×2

S.A.h

UNIT-V ORGANIC TRANSFORMATION AND REAGENTS Periods: 12 Preparation and synthetic applications of Lithium aluminum hydride, sodium Borohydride, Tri-n-butyl tin hydride,9-BBN,NBS,Trimethylsillyl iodide, n-Butyl Lithium, Grignard reagent, Gilmann reagent, LDA, DCC, PCC, DDQ, 1,3-Dithiane, SeO2,OsO4, KMnO4. Phase transfer catalyst, Crown ethers and Merrifield resins. Chemoselective CO5 reaction-regioselective reaction - strereoselective reactions. **Practical Periods:-**Lecture Periods: 60 **Tutorial Periods:-**Total Periods:60 Text Books 1. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee Organic Chemistry, 7th edition, Pearson Education, 2010. 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959. 3. P. S. Kalsi, Organic Reactions and their mechanism, 5th edition, New Age International Publishers, 2021. V.K.Ahluwalia, R.K Parashar, Organic reaction mechanisms, Ane Books India Publications, 3rd edition, 2009. 4. Reference Books 1. P. Y. Bruice, Organic Chemistry, 7th edition, Prentice Hall, 2013. 2. S. M. Mukherji and S. P. Singh, Reaction Mechanism in Organic Chemistry, 3rd edition, Macmillan India Ltd. 1984. 3. Jonathan Clayden, Nick Greeves and Stuart Warren, Organic Chemistry, Oxford University Press, 2nd edition, 2016.4. 4. Francis A.Carey and Richard J.Sunberg, Advanced Organic Chemistry, Springer Science & Business Media, 3rd Edition,2013. 5. J. March and M. Smith, Advanced Organic Chemistry, 5th edition, John-Wiley and Sons.2001. Web References 1. https://bit.ly/3HMIFWX

- 2. https://www.organic-chemistry.org/
- 3. https://www.studyorgo.com/summary.php

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSC				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	inuous Ass	essment Marks (C	CAM)	End Semester	Total
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

S.A.h

Course Name PHYSICAL CHEMISTRY II 4 - 4 25 75 10 Prerequisite Basic Knowledge studied in the UG Level To understand the behaviour of electrolyte solutions To categorize the molecules based on the symmetry and group. To solve Schrodinger equation for multi electron systems and know about approximation method To solve Schrodinger equation for multi electron systems and know about approximation method To study about molecular spectroscopy On completion of the course, the students will be able to BT Mapping(Highest Lev CO1 Understand the behaviour of electrolyte solutions K3 CO2 Know about the partial molar thermodynamics properties and fugacity K3 CO3 Categorize the molecules based on the symmetry and group. K3 CO3 Study about molecular spectroscopy K3 CO4 Solve Schrodinger equation for multi electron systems and know about K3 CO5 Study about molecular spectroscopy K3 CO3 categorize the molecules based on the symmetry and group. K3 CO4 Solve Schrodinger equation for multi electron systems and know about K3 CO5 Study about molecular spectroscopy K3 CO4 Solve Schrodinger equation on Polybe Huckel limiting law appreciable concentrations of the courses. Periods: 12 Conduc	Department	Chemistry	Programm	ie: M.Sc.	Chemist	ry						
Course Name PHYSICAL CHEMISTRY II L T P C CAM ESE Th Prerequisite Basic Knowledge studied in the UG Level - 4 25 75 10 Prerequisite Basic Knowledge studied in the UG Level - 4 2 75 10 Prerequisite Basic Knowledge studied in the UG Level - 4 2 75 10 Course Objectives - To understand the behaviour of electrolyte solutions - To study about molecular spectroscopy - To study about molecular spectroscopy K3 Course Outcome CO1 Understand the behaviour of electrolyte solutions K3 - CO4 Solve Schrodinger equation for multi electron systems and know about K3 - CO4 Solve Schrodinger equation for multi electron systems and know about K3 - CO4 Solve Schrodinger equation - Deybe Huckel limiting law appreciable concentrations of C4 CO4 Solve Schrodinger equation. K3 UNIT-I ELECTROCHEMISTRY - I Periods: 12 Periods: 12 Periods: 12 Periods: 12 Periods: 12	Semester	Second Course Category Code: DSC *End Semester Exam Type: 1 A23PCHT206 Periods/Week Credit Maximum Marks										
Course Name PHYSICAL CHEMISTRY II 4 - 4 25 75 10 Prerequisite Basic Knowledge studied in the UG Level - 4 25 75 10 Prerequisite Basic Knowledge studied in the UG Level - - 10 - - 4 25 75 10 Course Objectives - To understand the behaviour of electrolyte solutions - - - To actegorize the molecules based on the symmetry and group. - - To study about molecular spectroscopy K3 Course Outcome CO1 Understand the behaviour of electrolyte solutions K3 - CO4 Solve Schrodinger equation for multi electron systems and know about K3 Course Outcome CO2 Know about the partial molar thermodynamics properties and fugacity K3 CO4 Solve Schrodinger equation for multi electron systems and know about K3 UNIT-I ELECTROCHEMISTRY I Periods: 12 Conductance, equivalent molar conductance - Conductometric titarions-Oswald Dilution law -Mean Ionic activity and reantion cattivity coefficient of strong electrolytes - J	Course Code	A23PCHT206						CAM ESE				
Prerequisite Basic Knowledge studied in the UG Level Course Objectives • To understand the behaviour of electrolyte solutions • To solve Schrodinger the molecules based on the symmetry and group. • To solve Schrodinger equation for multi electron systems and know about approximation method • To solve Schrodinger equation for multi electron systems and know about approximation method • To solve Schrodinger equation for multi electron systems and know about approximation method Course Outcome CO1 Understand the behaviour of electrolyte solutions K3 CO2 Know about the partial molar thermodynamics properties and fugacity K3 CO3 Categorize the molecules based on the symmetry and group. K3 CO4 Solve Schrodinger equation for multi electron systems and know about K3 CO5 Study about molecular spectroscopy K3 JNIT-I ELECTROCHEMISTRY - I Periods: 12 Conductance, equivalent molar conductance - Conductometric titations-Oswald Dilution law -Mean ionic activity and nean ionic activity coefficient of strong electrolytes – Ionic strength -Debye Huckel limiting law -garital molar properties - partial molar free energy (Chemical Potential), Gibbs-Duhem Equation - Variation of these quantities. Definition of fugacity - Determination of these content - Their disproperties - partial molar free energy (Chemic	Course Name			T				Į	TM 100			
Course Objectives To understand the behaviour of electrolyte solutions To know about the partial molar thermodynamics properties and fugacity To solve Schrodinger equation for multi electron systems and know about approximation method. To study about molecular spectroscopy On completion of the course, the students will be able to BT Mapping(Highest Lev CO1 Understand the behaviour of electrolyte solutions CO2 Know about the partial molar thermodynamics properties and fugacity CO3 Categorize the molecules based on the symmetry and group. CO4 Solve Schrodinger equation for multi electron systems and know about K3 CO5 Study about molecular spectroscopy K3 Co5 Study about molecular spectroscopy K3 CO5 Study about molecular spectroscopy K3 Co5 Study about molecular spectroscopy K3 Co5 Study about molecular spectroscopy Co6 Study about molecular spectroscopy Periods: 12 Partial molar presp						-	23	15	100			
Course Objectives To know about the partial molar thermodynamics properties and fugacity • To categorize the molecules based on the symmetry and group. • To solve Schrodinger equation for multi electron systems and know about approximation method • To study about molecular spectroscopy Ourcome On completion of the course, the students will be able to BT Mapping(Highest Lev CO1 Understand the behaviour of electrolyte solutions K3 Course Ourcome CO2 Know about the partial molar thermodynamics properties and fugacity K3 CO3 Categorize the molecules based on the symmetry and group. K3 CO4 Solve Schrodinger equation for multi electron systems and know about K3 CO5 Study about molecular spectroscopy K3 INIT-1 ELECTROCHEMISTRY - I Periods: 12 Conductance, equivalent molar conductance - Conductometric titarions-Oswald Dilution law -Mean ionic activity and nean ionic activity coefficient - activity coefficient of strong electrolytes – Ionic strength -Debye Huckel limiting law - periods: 12 Vanitation of traggerity - I Periods: 12 Partial molar properties - partial molar free energy (Chemical Potential), Gibbs-Duhem Equation- Variation of hemical potential with temperature and pressure. Partial molar volume and Partial molar heat content - Their ginificance and determination of fugacity - Determination of fugacity by graphical CC heetrod-variation of fugacity with temperature and pressure. The concept of activity and activity co	rerequisite	Basic Knowledge studied in the OG										
Objectives • To know about the partial modar through that is properties and know about approximation method • To solve Schrodinger equation for multi electron systems and know about approximation method • To solve Schrodinger equation for multi electron systems and know about approximation method • To solve Schrodinger equation for multi electron systems and know about approximation method • To study about molecular spectroscopy • To solve Schrodinger equation for multi electron systems and know about K3 • Cot Understand the behaviour of electrolyte solutions K3 • Cot Solve Schrodinger equation for multi electron systems and know about K3 • Cot Solve Schrodinger equation for multi electron systems and know about K3 • Cot Solve Schrodinger equation for multi electron systems and know about K3 • Cot Solve Schrodinger equation for multi electron systems and know about K3 • Cot Study about molecular spectroscopy K3 • Cot Study about molecular spectroscopy </td <td>0</td> <td>To understand the behaviour</td> <td>of electrolyte</td> <td>solutions</td> <td></td> <td></td> <td></td> <td></td> <td></td>	0	To understand the behaviour	of electrolyte	solutions								
To categorize the molecules based on the symmetry and group. To solve Schrodinger equation for multi electron systems and know about approximation method To study about molecular spectroscopy On completion of the course, the students will be able to To study about the partial molar thermodynamics properties and fugacity K3 CO2 Know about the partial molar thermodynamics properties and fugacity K3 CO3 Categorize the molecular spectroscopy K3 CO4 Solve Schrodinger equation for multi electron systems and know about K3 CO4 Solve Schrodinger equation for multi electron systems and know about K3 CO5 Study about molecular spectroscopy K3 Co4 Solve Schrodinger equation of the spectroscopy K3 Co4 Solve Schrodinger equation of the spectroscopy Study about molecular spectroscopy Co4 Solve Schrodinger equation of the spectroscopy Study about molecular spectroscopy Co4 Solve Schrodinger equation of the spectroscopy Study about molecular spectroscopy Study about molecular spectroscopy Co4 S			-		-	<u> </u>	ty					
To study about molecular spectroscopy On completion of the course, the students will be able to BT Mapping(Highest Lev Course Outcome Cot Understand the behaviour of electrolyte solutions Cot Study about the partial molar thermodynamics properties and fugacity K3 Cot Solve Schrodinger equation for multi electron systems and know about K3 K3 K3 INIT-I ELECTROCHEMISTRY - I Periods: 12 Conductance, equivalent molar conductance - Conductometric titarions-Oswald Dilution law -Mean ionic activity and nean ionic activity coefficient - activity coefficient of strong electrolytes –lonic strength -Debye Huckel limiting law -ualitative and quantitive verification – limitation – Deybe Huckel limiting law appreciable concentrations of Cot efficient - activity coefficient of strong electrolytes –lonic strength -Debye Huckel limiting law -ualitative and quantitive verification – limitation – Deybe Huckel limiting law appreciable concentrations of Cot electrolytes – Debye – Huckel – Bronsted equation. INIT-II THERMODYNAMICS Periods: 12 Partial molar properties – partial molar free energy (Chemical Potential), Gibbs-Duhem Equation- Variation of hemical potential with temperature and pressure. The concept of activity and activity coefficient – retermination of fugacity with temperature and pressure. The concept of activity and activity coefficient – retermination of activity and activity coefficient by emf method – determination of activity and activity coefficient for on - electrolytes. INIT-II GROUP THEORY - I Periods: 12 Symmetry elements and symmetry operations- groups-Abelian and non- abelian groups- cyclic groups- order of roup-sub group-similarity transformation and conjugate elements. Clas C3 C4 C2V, C2V, C2D, D2D, D3D, D4D, D6D, Td, Oh). Reducible and Irreducible representations – Direct C4 Solvedinger equation for multi electron systems (Approximation methods)- perturbatio	Objectives	-										
On completion of the course, the students will be able to BT Mapping(Highest Lev Course Outcome C01 Understand the behaviour of electrolyte solutions K3 C02 Know about the partial molar thermodynamics properties and fugacity K3 C03 Categorize the molecules based on the symmetry and group. K3 C04 Solve Schrodinger equation for multi electron systems and know about K3 C05 Study about molecular spectroscopy K3 C01 Conductance, equivalent molar conductance - Conductometric titarions-Oswald Dilution law -Mean ionic activity and mean ionic activity coefficient - activity coefficient of strong electrolytes – lonic strength -Debye Huckel limiting law plaulitative and quantitive verification - limitation - Deybe Huckel limiting law appreciable concentrations of electrolytes – Debye - Huckel – Bronsted equation. Periods: 12 NIT-II THERMODYNAMICS Periods: 12 Partial molar properties - partial molar free energy (Chemical Potential), Gibbs-Duhem Equation- Variation of hemical potential with temperature and pressure. Partial molar volume and Partial molar not activity coefficient - letermination of activity and activity coefficient by emf method - determination of activity and activity coefficient or non- electrolytes. Periods: 12 Symmetry elements and symmetry operations - groups-Abelian and non- abelian groups - cyclic groups- order of group-sub Group - groups-similarity				ctron sys	tems and	d know ab	out approx	imation n	nethods			
Course Outcome Co1 Understand the behaviour of electrolyte solutions K3 Course Outcome Co2 Know about the partial molar thermodynamics properties and fugacity K3 Co3 Categorize the molecules based on the symmetry and group. K3 Co4 Solve Schrodinger equation for multi electron systems and know about K3 JNIT-I ELECTROCHEMISTRY - I Periods: 12 Conductance, equivalent molar conductance - Conductometric titarions-Oswald Dilution law -Mean ionic activity and nean ionic activity coefficient - activity coefficient of strong electrolytes – lonic strength - Debye Huckel Imiting law qualitative and quantitive verification – limitation – Deybe Huckel Imiting law appreciable concentrations of electrolytes – Debye – Huckel – Bronsted equation. Periods: 12 INIT-II THERMODYNAMICS Periods: 12 Partial molar properties – partial molar free energy (Chemical Potential), Gibbs-Duhem Equation- Variation of ehemical potential with temperature and pressure. Partial molar neat content – Their partial molar determination of tugacity with temperature and pressure. The concept of activity and activity coefficient – eletronytes. Periods: 12 Symmetry elements and symmetry operations- groups-Abelian and non- abelian groups- cyclic groups- order of propus-sub group-similarity transformation and conjugate elements- class-point groups- coduct representation. Periods: 12 NIT-IV QUANTUM MECHANICS		To study about molecular spe	ctroscopy									
Course Outcome CO2 Know about the partial molar thermodynamics properties and fugacity K3 C04 Solve Schrodinger equation for multi electron systems and know about K3 C04 Solve Schrodinger equation for multi electron systems and know about K3 INIT-I ELECTROCHEMISTRY - I Periods: 12 Conductance, equivalent molar conductance - Conductometric titarions-Oswald Dilution law -Mean ionic activity orefficient - activity coefficient of strong electrolytes – Ionic strength -Debye Huckel limiting law - qualitative and quantitive verification – limitation – Deybe Huckel limiting law appreciable concentrations of electrolytes – Debye – Huckel – Bronsted equation. Periods: 12 INIT-II THERMODYNAMICS Periods: 12 Partial molar properties – partial molar free energy (Chemical Potential), Gibbs-Duhem Equation- Variation of hemical potential with temperature and pressure. Partial molar volume and Partial molar heat content – Their Gipilicance and determination of these quantifies. Definition of fugacity v and activity coefficient for on- electrolytes. Periods: 12 INIT-III GROUP THEORY - I Periods: 12 Symmetry elements and symmetry operations- groups-Abelian and non- abelian groups- cyclic groups- order of roduct representation. Periods: 12 NIT-IV QUANTUM MECHANICS Periods: 12 Solution of Schrodinger equation for multi electron systems (Approximation method		On completion of the course, the st	udents will b	be able to	D		BT Mappi	ng(Highe	st Leve			
Outcome Cost Protocy P		CO1 Understand the behaviour of e	lectrolyte solu	itions				K3				
CO3 Categorize the molecules based on the symmetry and group. K3 C04 Solve Schrodinger equation for multi electron systems and know about K3 JNIT-I ELECTROCHEMISTRY - I Periods: 12 Conductance, equivalent molar conductance - Conductometric titarions-Oswald Dilution law -Mean ionic activity and mean ionic activity coefficient of strong electrolytes – Ionic strength -Debye Huckel limiting law - ualitative and quantitive verification – limitation – Deybe Huckel limiting law appreciable concentrations of electrolytes – Debye – Huckel – Bronsted equation. Periods: 12 JNIT-II THERMODYNAMICS Periods: 12 Partial molar properties – partial molar free energy (Chemical Potential), Gibbs-Duhem Equation- Variation of themical potential with temperature and pressure. Partial molar volume and Partial molar heat content – Their ginficance and determination of fuse quantities. Definition of fugacity by graphical CC method – variation of gracity with temperature and pressure. The concept of activity and activity coefficient – determination of fugacity with temperature and pressure. The concept of activity and activity coefficient for on- electrolytes. JNIT-III GROUP THEORY - I Periods: 12 Symmetry elements and symmetry operations- groups-Abelian and non- abelian groups- cyclic groups- order of group-sub group-similarity transformation and conjugate elements- class-point groups for groups of class-point groups for conjugate of conjugate of class-point groups in theory- Lockel Molecular orbital theory of conjugatel systems (Approximation methods)- perturbation theory- first ord		CO2 Know about the partial molar th	nermodynami	cs prope	rties and	fugacity		K3				
CO5 Study about molecular spectroscopy K3 JNIT-I ELECTROCHEMISTRY - I Periods: 12 Conductance, equivalent molar conductance - Conductometric titarions-Oswald Dilution law -Mean ionic activity and mean ionic activity coefficient - activity coefficient of strong electrolytes – lonic strength -Debye Huckel limiting law qualitative and quantitive verification – limitation – Deybe Huckel limiting law appreciable concentrations of electrolytes – Debye – Huckel – Bronsted equation. Periods: 12 VINT-II THERMODYNAMICS Periods: 12 Partial molar properties – partial molar free energy (Chemical Potential), Gibbs-Duhem Equation- Variation of hemical potential with temperature and pressure. Partial molar volume and Partial molar heat content – Their significance and determination of these quantities. Definition of fugacity - Determination of fugacity by graphica tetermination of activity and activity coefficient by emf method – determination of activity and activity coefficient for on- electrolytes. Periods: 12 JNIT-III GROUP THEORY - I Periods: 12 Symmetry elements and symmetry operations- groups-Abelian and non- abelian groups- cyclic groups- order of group-sub group-similarity transformation and conjugate elements- class-point groups C1, C2, C3, C4, C2V, C3V, CeV, C2h, D3h, D4h, D6h, Td, Oh). Reducible and Irreducible representations – Direct C1 CC Solution of Schrodinger equation for multi electron systems (Approximation methods)- perturbation theory- truckel Molecular orbital theory of conjugated systems- entrubatin theory to Helium atom. Variation method-Application	Outcome	CO3 Categorize the molecules base	ed on the sym	metry an	d group.			K3				
JNIT-I ELECTROCHEMISTRY - I Periods: 12 Conductance, equivalent molar conductance - Conductometric titarions-Oswald Dilution law -Mean ionic activity and mean ionic activity coefficient - activity coefficient of strong electrolytes –lonic strength -Debye Huckel limiting law - ualitative and quantitive verification – limitation – Deybe Huckel limiting law appreciable concentrations of electrolytes – Debye – Huckel – Bronsted equation. CC JNIT-II THERMODYNAMICS Periods: 12 Partial molar properties – partial molar free energy (Chemical Potential), Gibbs-Duhem Equation - Variation of chemical potential with temperature and pressure. Partial molar volume and Partial molar heat content – Their ginificance and determination of these quantities. Definition of fugacity - Determination of fugacity by graphical Con electrolytes. CC JNIT-III GROUP THEORY - I Periods: 12 Symmetry elements and symmetry operations- groups-Abelian and non- abelian groups- cyclic groups- order of group-sub group-similarity transformation and conjugate elements- class-point groups C1,C2,C3,C4,C2V,C3V,C4V,C2h,D2h,D3h,D4h,D6h,Td, Oh). Reducible and Irreducible representations – Direct C1 CC JNIT-IV QUANTUM MECHANICS Periods: 12 Solution of Schrodinger equation for multi electron systems (Approximation methods)- perturbation theory- forduce representation. Periods: 12 JNIT-IV QUANTUM MECHANICS Periods: 12 Solution of Schrodinger equation for multi electron systems (Approxima		CO4 Solve Schrodinger equation fo	r multi electro	n system	ns and kr	now about		K3				
Conductance, equivalent molar conductance - Conductometric titarions-Oswald Dilution law -Mean ionic activity and nean ionic activity coefficient - activity coefficient of strong electrolytes –lonic strength -Debye Huckel limiting law –qualitative and quantitive verification – limitation – Deybe Huckel limiting law appreciable concentrations of electrolytes – Debye – Huckel – Bronsted equation. CC JNIT-II THERMODYNAMICS Periods: 12 Partial molar properties – partial molar free energy (Chemical Potential), Gibbs-Duhem Equation - Variation of chemical potential with temperature and pressure. Partial molar volume and Partial molar heat content – Their gignificance and determination of these quantities. Definition of fugacity - Determination of fugacity by graphical CC electrolytes. Conductance, Regulation - Periods: 12 Partial molar properties – partial molar free energy (Chemical Potential), Gibbs-Duhem Equation - Variation of charactivity coefficient – Their digarity with temperature and pressure. The concept of activity and activity coefficient - determination of activity and activity coefficient for on- electrolytes. Conductance, Coeperations - groups-Abelian and non- abelian groups - cyclic groups- order of group-sub group-sub group-sub group-sub groups-imilarity transformation and conjugate elements- class-point groups C1,C2,C3,C4,C2V,C3V,CmV,C2h,D2h,D3h,D4h,D6h,Td, Oh). Reducible and Irreducible representations – Direct C1 JNIT-IV QUANTUM MECHANICS Periods: 12 Solution of Schrodinger equation for multi electron systems (Approximation methods)- perturbation theory-first order correction to the energy and wave function. Application of first order correction to the energy and wave function. Application of firs		CO5 Study about molecular spectro	scopy					K3				
nean ionic acitivity coefficient - activity coefficient of strong electrolytes –lonic strength -Debye Huckel limiting law - ualitative and quantitive verification – limitation – Deybe Huckel limiting law appreciable concentrations of electrolytes – Debye – Huckel – Bronsted equation. CC JNIT-II THERMODYNAMICS Periods: 12 Partial molar properties – partial molar free energy (Chemical Potential), Gibbs-Duhem Equation- Variation of chemical potential with temperature and pressure. Partial molar volume and Partial molar heat content – Their Gigificance and determination of these quantities. Definition of fugacity - Determination of activity and activity coefficient by emf method – determination of activity and activity coefficient for non-electrolytes. Periods: 12 Symmetry elements and symmetry operations- groups-Abelian and non- abelian groups- cyclic groups- order of roduce representation. Periods: 12 NIT-II GROUP THEORY - I Periods: 12 Symmetry elements and symmetry operations- groups-Abelian and non- abelian groups- cyclic groups- order of roduce representation. Periods: 12 Solution of Schrodinger equation for multi electron systems (Approximation methods)- perturbation theory- fortuckel Molecular orbital theory of conjugated systems-ethylene, butadiene, cyclobutadiene and benzene. CC Colucted of electron density, bond order and delocalization energy. Periods: 12 Solution of electron density, bond order and delocalization energy. Periods: 12 Solution of Schrodinger equation for multi electron systems (Approximation me	JNIT-I	ELECTROCHEMISTRY - I					F	Periods:	12			
chemical potential with temperature and pressure. Partial molar volume and Partial molar heat content – Their consignificance and determination of these quantities. Definition of fugacity - Determination of fugacity by graphical determination of fugacity with temperature and pressure. The concept of activity and activity coefficient – determination of activity and activity coefficient by emf method – determination of activity and activity coefficient for determination of activity and activity coefficient by emf method – determination of activity and activity coefficient for on- electrolytes. Periods: 12 JNIT-III GROUP THEORY - I Periods: 12 Symmetry elements and symmetry operations- groups-Abelian and non- abelian groups- cyclic groups- order of group-sub group-similarity transformation and conjugate elements- class-point groups (C1,C2,C3,C4,C2V,C3V,C∞V,C2h,D2h,D3h,D4h,D6h,Td, Oh). Reducible and Irreducible representations – Direct C2 CC JNIT-IV QUANTUM MECHANICS Periods: 12 Solution of Schrodinger equation for multi electron systems (Approximation methods)- perturbation theory-first order correction to the energy and wave function. Application of first order conjugate develocalization method to Helium atom. CC Hackel Molecular orbital theory of conjugated systems-ethylene, butadiene, cyclobutadiene and benzene. CI JNIT-V MOLECULAR SPECTROSCOPY - I Periods: 12 Electromagnetic radiation- types of molecular spectra. Rotational spectroscopy- selection rule-rotational spectra of platomic molecules (Rigid rotator)- Types of poly atomic molecules. Vibrational spectroscopy- selection rule-	JNIT-II	THERMODYNAMICS					F	Periods:	12			
JNIT-III GROUP THEORY - I Periods: 12 Symmetry elements and symmetry operations- groups-Abelian and non- abelian groups- cyclic groups- order of group-sub group-similarity transformation and conjugate elements- class-point groups C1,C2,C3,C4,C2V,C3V,C∞V,C2h,D2h,D3h,D4h,D6h,Td, Oh). Reducible and Irreducible representations – Direct C1,C2,C3,C4,C2V,C3V,C2V,C3V,C2N,C2h,D2h,D3h,D4h,D6h,Td, Oh). Reducible and Irreducible representations – Direct C1,C2,C3,C4,C2V,C3V,C2N,C2N,C2N,C2N,C2N,C2N,C2N,C2N,C2N,C2N	chemical poter significance ar method –varia determination	ntial with temperature and pressure. Find determination of these quantities. In tion of fugacity with temperature and of activity and activity coefficient by em	Partial molar Definition of fu pressure- T	volume ugacity - he conce	and Par Determ ept of ac	tial molar ination of ctivity and	heat cont fugacity b activity c	ent – The y graphic oefficient	eir cal CO2			
group-sub group-similarity transformation and conjugate elements- class-point groups C1,C2,C3,C4,C2V,C3V,C∞V,C2h,D2h,D3h,D4h,D6h,Td, Oh). Reducible and Irreducible representations – Direct CC Doroduct representation. QUANTUM MECHANICS Periods: 12 Periods: 12 Solution of Schrodinger equation for multi electron systems (Approximation methods)- perturbation theory- Nondegenerate perturbation theory- first order correction to the energy and wave function. Application of first order Derturbation theory to Helium atom. Variation method-Application of variation method to Helium atom. Huckel Molecular orbital theory of conjugated systems-ethylene, butadiene, cyclobutadiene and benzene. CC Calculation of electron density, bond order and delocalization energy. Periods: 12 JNIT-V MOLECULAR SPECTROSCOPY - I Periods: 12 Electromagnetic radiation- types of molecular spectra. Rotational spectroscopy- selection rule-rotational spectra of diatomic molecules (Rigid rotator)- Types of poly atomic molecules. Vibrational spectroscopy- selection rule-							F	Periods:	12			
Solution of Schrodinger equation for multi electron systems (Approximation methods)- perturbation theory- Nondegenerate perturbation theory- first order correction to the energy and wave function. Application of first order berturbation theory to Helium atom. Variation method-Application of variation method to Helium atom. Huckel Molecular orbital theory of conjugated systems-ethylene, butadiene, cyclobutadiene and benzene. Calculation of electron density, bond order and delocalization energy.CCUNIT-VMOLECULAR SPECTROSCOPY - IPeriods: 12Electromagnetic radiation- types of molecular spectra. Rotational spectroscopy- selection rule-rotational spectra of diatomic molecules (Rigid rotator)- Types of poly atomic molecules. Vibrational spectroscopy- selection rule-	group-sub C1,C2,C3,C4,	group-similarity transformation C2V,C3V,C∞V,C2h,D2h,D3h,D4h,D6h,	and con	jugate	eleme	ents- c	lass-point	grou	ps			
Nondegenerate perturbation theory- first order correction to the energy and wave function. Application of first order perturbation theory to Helium atom. Variation method-Application of variation method to Helium atom. Construction Huckel Molecular orbital theory of conjugated systems-ethylene, butadiene, cyclobutadiene and benzene. Construction of electron density, bond order and delocalization energy. UNIT-V MOLECULAR SPECTROSCOPY - I Periods: 12 Electromagnetic radiation- types of molecular spectra. Rotational spectroscopy- selection rule-rotational spectra of diatomic molecules (Rigid rotator)- Types of poly atomic molecules. Vibrational spectroscopy- selection rule-	JNIT-IV	QUANTUM MECHANICS					F	Periods:	12			
Electromagnetic radiation- types of molecular spectra. Rotational spectroscopy- selection rule-rotational spectra of diatomic molecules (Rigid rotator)- Types of poly atomic molecules. Vibrational spectroscopy- selection rule-	Nondegenerate perturbation the Huckel Molec	e perturbation theory- first order correc eory to Helium atom. Variation method- ular orbital theory of conjugated s	tion to the en Application of ystems-ethyle	ergy and variation ene, buta	l wave fu n method	nction. Ap to Helium	plication c atom.	f first ord	ler CO4			
diatomic molecules (Rigid rotator)- Types of poly atomic molecules. Vibrational spectroscopy- selection rule-	JNIT-V	MOLECULAR SPECTROSCOPY - I					F	Periods:	12			
			B <i>i i</i> b									

S.S.h

fundamental vibration of linear and non- linear molecules- overtones-fermi resonance. Raman spectroscopyselection rule-Rayleigh and Raman Scattering-Rotational Raman spectrum of a diatomic Molecule-Rotational -Vibrational Raman spectrum. Mutual Exclusion principle. Electronic spectroscopy- Absorption and intensity shiftsselection rule.Frank- Condon principle for the electronic transition for a diatomic molecule. Lecture Periods: 60 Tutorial Periods:-Practical Periods:-Total Periods:60 Text Books 1. B.R.Puri, L.R. Sharma Madan S Pathania, Principles of Physical Chemistry, 2022, Vishal Publishing co, 48th edition. 2. Gupta M. C., 1993, Statistical Thermodynamics, Wiley Eastern limited, New Delhi. 3. Lee, Sears, Tercotte, 1973, Statistical Thermodynamics, Addision Wesley Publishing Co., London – 1st Edition. 4. R.K.Prasad, Quantum Chemistry, New age international publishers, 4th revised edition, 2020. 5. P.K.Bhattacharya, Group Theory and its applications, Himalaya Publeshers. 3rd edition. 2014. Reference Books 1. Antropov L., 1999, Theoretical electrochemistry, MIR Publications, New Delhi. 2. Glasstone S., 2002, An Introduction to Electrochemistry, Von Nostrand Co. Inc., Toronto. 3. Kuriakose J. C., Rajaram, J. 1999, Thermodynamics, III edition, Shobanlal Nagin Chand, New Delhi, India. 4. H.W. Hanna, 1993, Quantum Mechanics in Chemistry-Benjamin –CummizaLondon Publishing Company, New Delhi, India 5. Chandra A. K., 1988, Introductory Quantum Chemistry, 3rd edition, Tata McGraw-Hill Publishing Co, New Delhi, India Web References 1. https://nptel.ac.in/courses/104/103/104103112/ 2. https://bit.lv/3tL3GdN 3. https://www.whfreeman.com/pchem8

5. https://www.whiteeman.com/pche

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program S	pecific Outco	mes (PSOs)
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	CAM)	End Semester	Total	
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

	Chemistry	Program	ne: M.S	c. Che	mistry					
Semester	Second		<u> </u>	Code:	DSE *End					
Course Code	A23PCHE204	Periods/V	Veek		Credit		aximum N	······		
		L 4	T	Р	C 4	CAM 25	ESE 75	TM 100		
		•	-	-	4	23	/3	100		
Prerequisite	Basic Knowledge studied in the UG	Level								
_	To apply a range of computation	nal tools to a	address t	oxicolo	gical questi	ons				
Course Objectives	 To give students skills in the ret for chemical/biological information 			issemir	nation, and u	use of info	rmation sy	/stems		
	To prepare for a career in in-sili	co toxicity p	rediction	in the	oharma, ind	ustryetc.				
	On completion of the course, the stud	dents will b	e able to	ס		BT Mapp	ing(Highe	st Level)		
	CO1 Learn about the information of ch	neminforma	tics and i	ts appl	cations		K3			
Course	· ·			emical	Reactions.		K3			
Outcome							K3			
	CO2Know about the Representation of Molecules and Chemical Reactions.K3CO3Identify about the Searching Chemical Structure.K3CO4Understand about the Computer Assisted Virtual screening design.K3CO5Learn about the Application of Cheminformatics in Drug DesignK3									
			atics in D	rug Des	sign					
UNIT-I	INTRODUCTION TO CHEMINFORM	MATICS				P	eriods: '	12		
Nomenclature;	REPRESENTATION OF MOLECUL Different types of Notations; SMILE	S coding;	Matrix R	epres	entations;		eriods: ² of Molfile			
and Sdfiles; Lil	braries and toolkits; Different electror	nic effects;	Reactio	n clas	sification			CO2		
UNIT-III	SEARCHING CHEMICAL STRUCT	URE				P	eriods: [^]	12		
Full structure	search; sub structure search; basi	c ideas; s	imilarity	searc	h; Three	dimensio	nal searc	ch		
methods; Bas visualization.	ics of Computation of Physical a	ind Chem	ical Da	ta and	structure	e descrip	tors; Da	ta CO3		
UNIT-IV	COMPUTER ASSISTED VIRTUAL	SCREENI	NG DES	IGN		P	eriods: ²	12		
Practical aspe	ed Virtual Screening- Protein Ligand cts of structure based Virtual Screen emical databases, Role of computers	ing; Predic	ction of a	ADME		•		•		
UNIT-V	APPLICATION OF CHEMINFORMA	ATICS IN E	DRUG D	ESIGN	l	P	eriods:	12		
Target Identifi	tructure-Property Relations; Descript cation and Validation; Lead Finding Libraries; Ligand Based and Structur	and Opti	imizatior	n; Ana						
Lecture Perio	ds: 60 Tutorial Periods:-	Pract	ical Per	iods:-	•	Fotal Per	iods:60			

S.S.h

Te	t Books			 					
1	Androw D	Loooh	Voloria	Clumor	Introduction to	Chaminformation	Acadomia Dublichar	Nothorlondo	ວດດວ

- 1. Andrew R. Leach, Valerie J. Gillet, Cluwer, Introduction to Cheminformatics, Academic Publisher, Netherlands, 2003.
- 2. Johann Gasteiger& Thomas Engel, A Textbook of Chemoinformatics, Wiley Publisher, 2003.
- **3.** Johann Gasteiger& Thomas Engel, Basic Concepts and Methods, Wiley Publisher, 2018.

Reference Books

- 1. Lisa B. English (Editor), Combinatorial Library Methods and Protocols, Humana Press Inc, Volume:201, 2002.
- 2. Frank Jensen, Introduction to Computational Chemistry, Wiley Publisher, Second Edition, 2006.
- 3. FideleNtie Kang, Chemoinformatics of Natural Products, De Gruyter Publisher, 2022.
- 4. Jagjeet Singh, Cheminformatics, Random House Publisher, 2020.
- 5. JurgenBaiorath, Chemoinformatics for Drug Discovery, Wiley Publisher, 2013.

Web References

- 1. https://chem.libretexts.org
- 2. https://en.wikibooks.org/wiki/Chemical_Information_Sources
- 3. https://guides.loc.gov/chemistry-resources

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program S	pecific Outco	mes (PSOs)
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	3	3	3	3	3	3	3
2	3	2	3	2	1	3	2	2
3	2	2	2	3	2	1	3	3
4	2	3	2	2	2	2	3	2
5	3	2	3	3	3	2	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	End Semester	Total		
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

Department	Chemistry	Programm	e: M.Sc	. Chemi	stry					
Semester	Second Course Category Code: DSE *End Semester Exam Type: TE Periods/Week Credit Maximum Marks									
Course Code	A23PCHE205	Periods/W					· · · · · · · · · · · · · · · · · · ·			
		L	T	P	C	CAM	ESE	TM		
Course Name	ASYMMETRIC SYNTHESIS	4	-	-	4	25	75	100		
Prerequisite	Basic Knowledge studied in the UG Le	evel								
Course	To create awareness about th activity	•		-	-	-	and for bio	ological		
Objectives	Apply the important principles or	f stereocher	nistry ar	nd unde	rstand them					
	On completion of the course, the stud					BT Mappi	ng(Highest	Level)		
	CO1 Understand the basic concept of	f asymmetri	c Synthe	esis			K3			
Course Outcome	CO2 Able to synthesize on chiral sub						K3			
Outcome	CO3 Use chiral substrate to synthesiz	e asymmetr	ic comp	ounds			K3			
	CO4 Utilysze chiral auxiliary to synthe	esize asymn	netric co	ompound	sc		K3			
	CO5 handle chiral catalyst to synthesi			pounds			K3			
UNIT-I	INTRODUCTION TO ASYMMETRIC	C SYNTHE	SIS				Periods	: 12		
modifications.	ASYMMETRIC SYNTHESIS ON CH ddition to α–chiral carbonyl compound Double stereo differentiation; matched pa tion reactions. Electrophilic addition to α –	s; Predictio air and misr	n of st natched	ereoche I pair; ex	camples fro	m aldol co	ondensation			
– oxidation, alk	sylation of enolates of β -chiral carbonyl co	•								
UNIT-III	ASYMMETRIC SYNTHESIS USING	CHIRAL F	REAGE	NTS			Periods	: 12		
reactions, T.S prochiral keton Asymetric Mic	boranes -Application of chiral organ b models; Chiral modification of lithium es; oxazaborolidines. T.S model; hael addition to α , β – unsaturated of re deprotonation.	aluminum	nydride,	BINAL	-H - applic	ation in r	eduction of	CO3		
UNIT-IV	ASYMMETRIC SYNTHESIS USING	G CHIRAL	AUXIL	IARY			Periods	: 12		
	es derived from proline, champhor, mentholidines, oxithiane, oxazolidine-2- one, thol.									
UNIT-V	ASYMMETRIC SYNTHESIS USING	CHIRAL (ATAL	YSTS			Periods	: 12		
reactions: DA advances DIPA further expans	kylation and allylation of carbonyl comp IB, Keck's allylation, TADDOLs and o AMP, DIOP and Noyori's BINAP - selected ion in the field of organo catalysis. Sha metal-semicorrinato complexes and Jaco	other privile d reactions arpless epo	ged liga &examp xidation	ands. A oles. Pro , dihydr	symmetric line mediate oxylation, a	hydrogena ed aldol re aminohydro	ation: early actions and	CO5		

S.S.N

Le	cture Periods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60
Те	xt Books			
1. 2. 3. Re	Stereochemistry of Carbo	lorrison, J. D. Vol 1- 5, Acad on compounds: E. L. Eliel, V etric Catalysis (Jacobsen, E.		ds.) Springer 2000.
1				
3. 4.	Catalytic Asymmetric Sym Methods for the Asymmetric Principles of Asymmetric E. Gawley, J Aube, Per	Synthesis (Tetrahedron ser	ergamon, 1998. Organic Molecules, Daniel J. O ies in Organic Chemistry), R. nthesis, H. B. Kagan, Thiem	'Leary, Lecture Notes 2001. e Medical Publishers, I st Edn., 2003
2. 3. 4. 5.	Catalytic Asymmetric Sym Methods for the Asymmetric Principles of Asymmetric E. Gawley, J Aube, Per	nthesis: Ojima, I.VCH-NY, P tric Synthesis of Complex C Synthesis (Tetrahedron ser gman, 1996 Aymmetric Sy	ergamon, 1998. Organic Molecules, Daniel J. O ies in Organic Chemistry), R. nthesis, H. B. Kagan, Thiem	
2. 3. 4. 5.	Catalytic Asymmetric Syn Methods for the Asymme Principles of Asymmetric E. Gawley, J Aube, Per Asymmetric Synthesis, G	nthesis: Ojima, I.VCH-NY, P tric Synthesis of Complex C Synthesis (Tetrahedron ser gman, 1996 Aymmetric Sy a. Proctor, Oxford University	ergamon, 1998. Organic Molecules, Daniel J. O ies in Organic Chemistry), R. nthesis, H. B. Kagan, Thiem	
2. 3. 4. 5. We	Catalytic Asymmetric Syn Methods for the Asymmetric Principles of Asymmetric E. Gawley, J Aube, Per Asymmetric Synthesis, G b References https://chem.libretexts.org	nthesis: Ojima, I.VCH-NY, P tric Synthesis of Complex C Synthesis (Tetrahedron ser gman, 1996 Aymmetric Sy a. Proctor, Oxford University	ergamon, 1998. Organic Molecules, Daniel J. O ies in Organic Chemistry), R. nthesis, H. B. Kagan, Thiem Press, USA, 1997.	

COs		Progra	m Outcome	es (POs)		Program S	pecific Outco	mes (PSOs)
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	2	2	2	2	2	2	3	3
3	3	3	3	3	2	3	2	2
4	2	3	2	1	3	2	3	2
5	2	2	3	3	3	3	2	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	inuous Ass	CAM)	End Semester	Total	
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

S.Sib

Semester	Chemistry	Programm	e: M.Sc.	Chemis	try			
Semester	Second Course Category Code: DSE *End Semester Exam Type							
Course Code	A23PCHE206	Periods/W	eek		Credit	Ma	aximum M	arks
		L	Т	Р	С	CAM	TM	
Course Name	GREEN CHEMISTRY	4	-	-	4	25	75	100
Prerequisite	Basic Knowledge studied in the UG	i Level						
	To Understand about Green	Chemistry						
Course	To learn about Ultrasound a	nd Microwave u	isage in	the Gree	en Chemis	try		
Objectives	To know about Green Cataly		Ŭ					
	To learn about phase transfer	er mechanism i	n the Gre	en Che	mistry			
	To use green chemistry cond	cept in the vario	us orgai	nic react	ions			
	On completion of the course, the s	students will b	e able to	כ		BT Mapp	ing(Highe	st Leve
	CO1 Learn about Green Chemistry	v					K3	
Course	CO2 Understand usage of Ultrasou	·	vovo in th	o Groo	n			
Outcome	Chemistry		ฉงธากแ		I		K3	
	CO3 Learn about usage various ca	atalyst in the gr	een che	mistry			K3	
	CO4 Learn about phase transfer m	nechanism in th	e Green	Chemis	try		K3	
	CO5 Apply green chemistry conce	pt in the various	s organic	c reactio	ns		K3	
UNIT-I	BASIC PRINCIPLES OF GREEN	CHEMISTR	/			P	eriods:	12
JNIT-II	ULTRASOUND AND MICROWA	Ned should be b	•		ITHESIS	P	eriods: '	12
	roduction, instrumentation, the pheno	VE ASSISTE	D GREE	EN SYN Sonoche	mical este	rification,	substitutio	n,
Ultrasound: Int addition, alkyla medium- spec alkylation of ac		VE ASSISTE omenon of cav g reactions. Mic m utilization), s –Alder reactio	D GREE tation. S rowaves advantag	EN SYN Sonoche :: introdu ges and	mical este uction- cor I limitatior	rification, cept- reac ns. Alkylat	substitutic tion vesse ion and	on, el / N- CO 2
Ultrasound: Int addition, alkyla medium- spec alkylation of ac solvents. Solve	roduction, instrumentation, the pheno tion, oxidation, reduction and coupling ific effects, atom efficiency (% ator tive methylene compounds and Diels	VE ASSISTE omenon of cav g reactions. Mic m utilization), s –Alder reaction esters.	D GREE tation. S rowaves advantag ons. Rea	EN SYN Sonoche :: introdu ges and	mical este uction- cor I limitatior	rification, cept- reac ns. Alkylat d reaction	substitutic tion vesse ion and	n, el / N- CO2 hic
Ultrasound: Int addition, alkyla medium- spec alkylation of ac solvents. Solve UNIT-III Green Reagen Anhydride, Po oxidation cataly	roduction, instrumentation, the pheno tion, oxidation, reduction and coupling ific effects, atom efficiency (% ator ctive methylene compounds and Diels ent free reactions and deprotection of e	VE ASSISTE omenon of cav g reactions. Mic m utilization), s –Alder reactio esters. N CATALYST lymeric thioanis le polymer. Gr	D GREE tation. S rowaves advantag ons. Rea ons. Rea S solyl Res een Cat	EN SYN Sonoche :: introdu ges and ctions in ctions in :in, polyn :alyst -	mical este uction- cor l limitation n water ar meric Carl Acid cata	rification, cept- reac is. Alkylat d reaction P oodiimide, lysts- bas	substitution tion vesse ion and s in orgar Periods: ^c Polystyre e catalyst	on, N- CO2 hic 12 ne ts-
Ultrasound: Int addition, alkyla medium- spec alkylation of ac solvents. Solve UNIT-III Green Reagen Anhydride, Po oxidation cataly	roduction, instrumentation, the pheno- tion, oxidation, reduction and coupling ific effects, atom efficiency (% ator ctive methylene compounds and Diels ent free reactions and deprotection of e GREEN REAGENT AND GREEN t - Polymer supported reagents – pol lystyrene wittig Reagent, Sulfonazid ysts - polymer supported catalysts- p	VE ASSISTE omenon of caving reactions. Mic m utilization), s –Alder reaction esters. N CATALYST lymeric thioanis le polymer. Gr olystyrene-alun	D GREE tation. S rowaves advantag ons. Rea ons. Rea S colyl Res een Cat ninum ch	EN SYN Bonoche :: introdu ges and ctions in ctions in in, polyn :alyst - nloride -	mical este uction- cor l limitation n water ar meric Carl Acid cata	rification, cept- reac os. Alkylat d reaction P oodiimide, lysts- bas c super ac	substitution tion vesse ion and s in orgar Periods: ^c Polystyre e catalyst	nn, N- CO nic 12 ne ts- ts- ts-
Ultrasound: Int addition, alkyla medium- spec alkylation of ac solvents. Solve UNIT-III Green Reagen Anhydride, Pol oxidation cataly polymer suppol UNIT-IV Introduction- m applications of alkyl halides, g	roduction, instrumentation, the pheno- tion, oxidation, reduction and coupling ific effects, atom efficiency (% ator ctive methylene compounds and Diels ent free reactions and deprotection of e GREEN REAGENT AND GREEN t - Polymer supported reagents – pol lystyrene wittig Reagent, Sulfonazid ysts - polymer supported catalysts- p rted photosensitizers	VE ASSISTE omenon of caving reactions. Mic m utilization), s –Alder reaction esters. NCATALYST lymeric thioanis le polymer. Gr olystyrene-alun TIN GREEN S t reaction- type ynthesis- nitrile nation reaction,	D GREE tation. S rowaves advantag ons. Rea ons. Rea S colyl Res een Cat ninum ch YNTHE s and a s from a alkylatio	EN SYN Bonoche :: introdu ges and ctions in ctions in in, polyn :alyst - nloride -	mical este uction- con l limitation n water an meric Carl Acid cata polymeric les of pha acyl halide on –Willia	rification, cept- reac os. Alkylat d reaction P oodiimide, lysts- bas c super ac P se transfe s, alkyl flu	substitutic tion vesse ion and s in orgar Periods: ' Polystyre e catalyst id catalyst reriods: ' er catalyst iorides fro	nn, N- CO nic 12 ne ts- cO 12 12
Ultrasound: Int addition, alkyla medium- spec alkylation of ac solvents. Solve UNIT-III Green Reagen Anhydride, Pol oxidation cataly polymer suppol UNIT-IV Introduction- m applications of alkyl halides, g	roduction, instrumentation, the pheno- tion, oxidation, reduction and coupling ific effects, atom efficiency (% ator ctive methylene compounds and Diels ent free reactions and deprotection of e GREEN REAGENT AND GREEN t - Polymer supported reagents – pol lystyrene wittig Reagent, Sulfonazid ysts - polymer supported catalysts- p rted photosensitizers PHASE TRANSFER CATALYST nechanism of phase transfer catalyst phase transfer catalyst in organic sy generation of dichlorocarbenes, elimin	VE ASSISTE omenon of caving reactions. Mice im utilization), is –Alder reaction esters. N CATALYST lymeric thioanis le polymer. Grin olystyrene-alun IN GREEN S it reaction- type ynthesis- nitrile mation reaction, rdrogen peroxid	D GREE tation. S rowaves advantag ons. Rea ons. Rea S colyl Res een Cat ninum ch YNTHE s and a s from a alkylatio e under	EN SYN Bonoche :: introdu ges and ctions in ctions in in, polyn :alyst - nloride -	mical este uction- con l limitation n water an meric Carl Acid cata polymeric les of pha acyl halide on –Willia	rification, cept- reac as. Alkylat d reaction P oodiimide, lysts- bas c super ac P se transfe s, alkyl flu mson Ethe	substitutic tion vesse ion and s in orgar Periods: ' Polystyre e catalyst id catalyst reriods: ' er catalyst iorides fro	nn, hl / N- CO2 nic 12 12 ts- CO3 12 m

Lectu	re Periods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60
Text E	Books			
1.	Organic Synthesis: Edition, 2003	Special Techniques, V.K.A	hluwalia and R. Aggarwal, N	arosa Publications, New Delhi, 4th
2.	R.Sanghi, M.M Sriva 2003.	astava, Green Chemistry E	nvironment Friendly alternative	es, Narosa Publications New Delh
3.	Green Chemistry – A	n Introduction text, Royal So	ciety of Chemistry, UK 2002.	
Refere	ence Books			
1.	P.T.Anastas and JJ.	Warner, Green Chemistry	theory and Prctices, Oxford Ur	niversity press, Oxford 1988.
2.			talysis, 2 nd edition Verlagchemi	
Web F	References			
1.	https://www.hansrajc	ollege.ac.in/hCPanel/upload	ls/elearning/elearning_docume	nt/Twelve_principle_of_GC.pdf
2.	https://fccollege.ac.in W)-2022.pdf	/Admin/Files/StudyMaterials	MICROWAVE%20&%20US%	520GREEN%20SYNTHESIS(REVIE
3.	https://fccollege.ac.in W)-2022.pdf	/Admin/Files/StudyMaterials	MICROWAVE%20&%20US%	20GREEN%20SYNTHESIS(REVIE

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	essment Marks (C	CAM)	End Semester	Total
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

Department	Chemist	ry	Program			-		_					
Semester	Second	Second Course Category Code: DSC *End Semester Exam Type:											
Course Code													
Course Name	PHYSIC	AL CHEMISTRY LAB –I	- L	-	P 4	2	50						
Prerequisite		nowledge studied in the UG L	_evel		<u> </u>								
	• 7	o learn about critical solution	system and	distributi	on coeffic	cient							
	• 7	o understand rate constant c	of the reaction	n and Co	mparison	of acid strer	ngths						
Course Objectives	• 7	o Analyse the activation and	frequency fa	actor									
	• 7	o learn about Molecular weig	ht of the cor	npound									
		o analyze phase diagram of											
	On comj	pletion of the course, the st	udents will	be able t	0		BT	Mapping Level					
Course	CO1 L	earn about critical solution sy	stem and dis	stribution	coefficie	nt		K3					
Outcome	CO2 L	Inderstand rate constant of th	e reaction a	nd Comp	arison of	acid strength	าร	K3					
		nalyse the activation and freq						K3					
		earn about Molecular weight	•	ound				K3					
	CO5 A	nalyze phase diagram of con	npound					K3					
Kl ₃ (Der 3. Determ 4. Compa 5. Determ 6. Associa 7. Determ 8. Phase 9. Phase 10. Adsorp	monstration ination of ination of a ination facto ination of diagram – diagram – tion of oxa	distribution coefficient and de n only) the rate constant for Persulpl cid strengths by Kinetics. the energy of activation and f r of benzoic acid between be molecular weight by Rast ma simple eutectic system three component system alic acid on charcoal. molecular weight by Transitic	nate oxidatio frequency fac nzene and w	n both by ctor. rater	r titrimetry			on of					
					- 1- 00		(-1 P ·	- 1- 00					
Lecture Period Reference Bod		Tutorial Periods:-	Pract	ical Perio	bas:-30	10	tal Peri	oas:30					
		eraswamy, R. &Kulandaivelu	ı, A. R. (1997	'). Basic I	Principles	s of Practical	Chemis	stry, (2nd I	Ed.).				
Sultan Chand 8		Howard, J. & John Warren, W	/ (1070) Ev	norimont	al Dhycic	al Chomietry	(7th E/						

2. Daniels, Mathews, F., Howard, J. & John Warren, W. (1970). Experimental Physical Chemistry, (7th Ed.). Mc Graw Hill. 3. Findlay, A., (1959). Practical Physical Chemistry, (7th Ed.).

27

S.S.h

Web References

- 1. https://egyankosh.ac.in/bitstream/123456789/15870/1/Unit-12.pdf
- 2. https://www.chem.uci.edu/~lawm/11-2.pdf
- 3. https://www2.tulane.edu/~sanelson/eens212/ternaryphdiag.htm

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	2	3	3	3	
2	3	2	3	2	3	2	2	2	
3	3	2	2	3	2	3	3	3	
4	2	2	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

	Continuo	ous Asses	sment Mark	s (CAM)	End Semester	Total
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks
Marks	15	15	10	10	50	100

_	Chemi	stry	Program	me: M.Sc	. Chemistry	/			
Department	C	4	Courses	Data an m · (* [am actor		
Semester	Secon		Periods/	Category C		mester Exam Type: PE Maximum Marks			
Course Code	A23PC	CHL204	L	T	Р	Credit C	CAM	ESE	TM
Course Name	INOR	GANIC CHEMISTRY LAB -		-	4	2	50	50	100
Prerequisite	Basic	Knowledge studied in the UG L	evel	i.	ii		l	i	i.
~	•	To Learn practical knowledge	on the binar	y mixture	analysis				
Course Objectives	•	To understand and develop the	e practical e	xperience	on the cor	nplex pre	paration		
	On cor	npletion of the course, the stu	Idents will	be able to)		BT	Mapping Level	
Course	CO1	Gain knowledge on the binary	analysis					K3	
Outcome	CO2	Develop skill on the iron and c	opper analy	vsis				K3	
	CO3	Improve practical experience	I on the cale	cium and r	magnesium	analysis		K3	
	CO4	Understand the complex forma	ation in diffe	erent meth	ods			K3	
	CO5	Learn the various complex ma	king proces	S				K3	
List of Experi	ments								
I)	Estima	ations of Metal lons in a Binary	Mixture						
	1.	Quantitative analysis of a mix	ture of iron	(volumet	ry) and cop	per (grav	imetry)		
	2.	Quantitative analysis of a mix	ture of cop	per (volum	netry) and	nickel (gr	avimetry)		
	3.	Quantitative analysis of a mix	ture of calci	ium (volur	metry) and	magnesi	um (gravii	metry)	
	4.	Quantitative analysis of a mix	xture of calo	ium and r	nagnesium	(both by	volumetr	y)	
	5.	Quantitative analysis of a mix	ture of iron	(volumet	ry) and zin	c (gravim	etry)		
	6.	Quantitative analysis of a mix	ture of copp	per (volum	netric) and	zinc (grav	/imetry)		
II)	Prepa	ration of Selected Complexes							
	1. Hex	mannine cobalt (III) chloride.							
	2. Pot	assium bisoxalatodiaquo chrom	ate (III)						
	3. Hex	athiourea lead (II) nitrate							
	4.Lea	d tetra acetate							
	5. Bis	(pyridiniumhexachloroplumb	ate)						
		Tutorial Periods:-	Prac	tical Peri	ods:-30	Т	otal Perio	ods:30	
Lecture Perio	ds: -	Tutorial Periods				L		540.00	

X2

S.S.h

Web References

- 1. https://egyankosh.ac.in/bitstream/123456789/15906/1/Experiment-17.pdf
- 2. https://egyankosh.ac.in/bitstream/123456789/15906/1/Experiment-17.pdf
- 3. https://chemistry.iyte.edu.tr/wp-content/uploads/sites/48/2019/06/CHEM-332-Anorganik-Kimya-Lab. Kitap%C3%A7%C4%B1%C4%9F%C4%B1.pdf

COs/POs/PSOs Mapping

COs		Progra	m Outcome		Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	2	3	3	3	
2	3	2	3	2	3	2	2	2	
3	3	2	2	3	2	3	3	3	
4	2	2	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

	Continuo	us Asses	sment Mark	s (CAM)	End Semester	Total
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks
Marks	15	15	10	10	50	100

Department	Mathematics	Programm			-			
Semester	Second Semester	Course Ca	0,	ode: SE	EC *End S	Semester I	Exam Typ	e:
Course Code	A23PMAS201	Periods/W	eek		Credit	Ma	ximum M	arks
		L	Т	Р	С	CAM	ESE	TM
Course Name	QUANTITATIVE REASONING AND RESEARCH APTITUDE	2	-	-	2	100	-	100
Prerequisite	Basic mathematical and reasoning know	wledge	i	.		k	±	i
	To know the simple interest and c	compound	nterest.					
	To know the Permutation and Co	ombination.						
0	To gain the knowledge of Time a	nd Work P	roblems.					
Course	To gain the knowledge the of percent	centage, pi	ofit and I	oss.				
Objectives	To know the concept of coding a	nd decodir	ıg.					
	On completion of the course, the stud			D		(BT Map Highest L	
Course	CO1 Learn about the simple interest ar	nd compou	nd intere	st.			K3	
Outcome	CO2 Understand the Problems on Trai	•					K3	
	CO3 Solve the Time and Distance Prol	blems.					K3	
	CO4 Know about the ratio and proport						K3	
	CO5 Understand the Alphanumeric ser						K3	
JNIT-I	• • • • • • • • • • • • • • • • • • •					Pe	riods: 6	
Simple interest	and Compound interest.					L		
JNIT-II	•					Po	riods: 6	CO
						Ге	11005. 0	
² ermutations a	nd Combinations - Problems on Trains							CO
JNIT-III						Pe	riods: 6	
Fime and Work	Problems - Time and Distance Problems.							со
JNIT-IV						Pe	riods: 6	
Percentage-Pro	ofit and Loss - Ratio and Proportion							CO
JNIT-V	•					Ре	riods: 6	
nput and Outp	ut – Coding and Decoding – Alphanumeric	c series – F	Ranking					СО
Lecture Period	ds: 30 Tutorial Periods:-	Practi	cal Perio	nds	Т	otal Perio	nds:30	
Reference Boo		Taoti		/uo.	•		Juj.00	
1 Quantitativ	e Aptitude for competitive Examination-Abhij	itGuba TM	ц					
-	cs for life-M. Immaclate-Nanjil offsetPrinters.	itOuna-1 Mi	1.					
	Arithmetic's-R. S-Aggarwal-S. Chand &Co.							
Text Books								
1. Quantitativ	e Aptitude for competitive Examination, R.S.	Aggarwal. S	. Chand a	nd comp	any Ltd,152	, Anna sala	i,	
Chennai.(2001				1	-			
2. Quantitativ	e Aptitude and Reasoning Praveen PHIP.Ltd.							
	reatment as in "Quantitative Aptitude" by R.S	. Aggarwal.	S Chand	and con	npany LtdR	am Nagar.	New Delh	i(2007
3. Scope and t			or chuira	und con				(

52

S.S.N

- 1. https://www.careerbless.com/aptitude/qa/home.php
- 2. https://www.javatpoint.com/aptitude/quantitative

 $3.\ https://www.letsstudytogether.co/quantitative-aptitude-topic-wise-questions-and-answers-pdf-download/$

Evaluation Method

		Contir	nuous Asses	sment Marks (CAM)	End Semester	
Assessment	CAT 1	CAT 2	CAT 3	Assignment*	Attendance	Examination (ESE) Marks	Total Marks
Marks		70 20 10				-	100

