

MASTER OF SCIENCE IN CHEMISTRY

ACADEMIC REGULATIONS (R 2023) CURRICULUM AND SYLLABI

S.S.h

M.Sc Chemistry

COLLEGE VISION AND MISSION

Vision

To be globally recognized for excellence in quality education, innovation and research for the transformation of lives to serve the society.

Mission

M1: Quality Education:

To provide comprehensive academic system that amalgamates the cutting edge technologies with best practices.

M2: Research and Innovation:

To foster value based research and innovation in collaboration with industries and institutions globally for creating intellectuals with new avenues.

M3: Employability and Entrepreneurship:

To inculcate the employability and entrepreneurial skills through value and skill based training.

M4: Ethical Values:

To instill deep sense of human values by blending societal righteousness with academic professionalism for the growth of society.

Department of Chemistry

Vision and Mission

Vision

To develop the department as world class centre of excellence in all aspects of higher education and research with an expertise in chemical sciences.

Mission

M1: Quality Education:

To inculcate quality inter-disciplinary training to improve the welfare of humanity.

M2: Practical knowledge:

To provide laboratory training in the field of chemistry in both public and private sectors.

M3: Research:

To educate our students for research to meet the global environmental issues

M4: Knowledge:

To produce graduates of International distinction, committed to integrity, professionalism and lifelong learning by widening their knowledge horizons in range and depth.

X2

S.A.h

M.Sc Chemistry

SI. No	Course Category	Breakdown of Credits
1	Discipline Specific Core Courses (DSC)	64
2	Discipline Specific Elective Courses (DSE)	16
3	Skill Enhancement Courses (SEC)	08
4	Internship	02
	Total	90

STRUCTURE FOR POSTGRADUATE PROGRAMME

SI.	Course Category	Cre	dits p	Total Credits		
No		Ι	II	III	IV	
1	Discipline Specific Core Courses (DSC)	16	16	16	16	64
2	Discipline Specific Elective Courses (DSE)	4	4	4	4	16
3	Skill Enhancement Courses (SEC)	2	2	2	2	8
4	Internship	-	-	2	-	2
Total			22	24	22	90

SCHEME OF CREDIT DISTRIBUTION - SUMMARY

S.S.N

	SEMESTER – I											
SI.	Course Code	Course Title	Catagory	I	Period	s	Cuedita	М	lax. Mar	ks		
No.	Course Code	Course Hue	Category	L	Т	Р	Creatis	CAM	ESM	Total		
Theo	Theory											
1	A23PCHT101	Inorganic Chemistry – I	DSC	4	0	0	4	25	75	100		
2	A23PCHT102	Organic Chemistry – I	DSC		0	0	4	25	75	100		
3	A23PCHT103	Physical Chemistry – I	DSC	4	0	0	4	25	75	100		
4	A23PCHE10X	DSE - I*	DSE	4	0	0	4	25	75	100		
Prac	tical											
5	A23PCHL101	Organic Chemistry Lab -I	DSC	0	0	4	2	50	50	100		
6	A23PCHL102	Inorganic Chemistry Lab – I	DSC	0	0	4	2	50	50	100		
Skill	Enhancement Cou	rse										
7	A23PCMS102	Professional Skills	SEC 2 0 0		0	2	100	-	100			
	First Semester Total								400	700		

	SEMESTER – II										
SI.		Course Title	Catagori	Periods			Credite	М	ax. Mar	ks	
No.	Course Code	Course Thie	Category	L	Т	Р	Credits	CAM	ESM	Total	
Theor	Theory										
1	A23PCHT204	Inorganic Chemistry – II	DSC	4	0	0	4	25	75	100	
2	2 A23PCHT205 Organic Chemistry – II		DSC	4	0	0	4	25	75	100	
3	A23PCHT206	Physical Chemistry – II	DSC	4	0	0	4	25	75	100	
4	A23PCHE20X	DSE - II*	DSE	4	0	0	4	25	75	100	
Practi	ical										
5	A23PCHL203	Physical Chemistry Lab –I	DSC	0	0	4	2	50	50	100	
6	A23PCHL204	Inorganic Chemistry Lab – II	DSC	0	0	4	2	50	50	100	
Skill I	Enhancement Courses										
7	A23PMAS201	Quantitative Reasoning and Research Aptitude	SEC	2	0	0	2	100	-	100	
Second Semester Total							22	300	400	700	

*Discipline Specific Electives are to be selected from the list given in Annexure I

	SEMESTER – III										
SI.	Course Code	Course Title	Catagory	Р	erio	ds	Creaditor	Μ	lax. Mar	ks	
No.	Course Code	Course Thie	Category	L	Т	Р	Creatis	CAM	ESM	Total	
Theory											
1	A23PCHT307	Inorganic Chemistry – III	DSC	4	0	0	4	25	75	100	
2	A23PCHT308	Organic Chemistry – III	DSC	4	0	0	4	25	75	100	
3	A23PCHT309	Physical Chemistry – III	DSC	4	0	0	4	25	75	100	
5	5 A23PCHE30X DSE - III*		DSE	4	0	0	4	25	75	100	
Practic	al										
6	A23PCHL305	Organic Chemistry Lab - II	DSC	0	0	4	2	50	50	100	
7	A23PCHL306	Physical Chemistry Lab - II	DSC	0	0	4	2	50	50	100	
Skill Eı	nhancement Courses										
8	A23PCHS301	Advance Research Methodology in Chemistry	SEC	2	0	0	2	100	0	100	
Interns	hip										
9	A23PCHN301	Internship	DSC	0	0	4	2	40	60	100	
Third Semester Total 24 340 46								460	800		

*Discipline Specific Electives are to be selected from the list given in Annexure I

X2

S.S.N

	SEMESTER – IV											
SI.	Course Code	Course Title	Cotogowy	F	Perio	ods	Cuadita	М	lax. Mar	ks		
No.	Course Code	Course Thie	Category	L	Т	Р	Creans	CAM	ESM	Total		
PROJE	PROJECT											
1	A23PCHT410	Organic Chemistry – IV	DSC	4	0	0	4	25	75	100		
2	A23PCHT411	Physical Chemistry – IV	DSC	4	0	0	4	25	75	100		
3	A23PCHE40X	DSE - IV*	DSE	4	0	0	4	25	75	100		
Practic	al											
4	A23PCHL407	Industrial Chemistry Lab - II	DSC	0	0	4	2	50	50	100		
PROJE	ECT											
5	A23PCHP401	Project Work	DSC	0	0	10	6	40	60	100		
SKILL	ENHANCEMENT (COURSES										
6	A23PCHS402	Health Science	SEC	2	0	0	2	100	-	100		
Fourth Semester Total						Fotal	22	265	335	600		

*Discipline Specific Electives are to be selected from the list given in Annexure I

S.S.N

Annexure I

DISCIPLINE SPECIFIC ELECTIVE COURSES*

Discip	Discipline Specific Elective – I (Offered in Semester I)								
Sl. No.	Course Code	Course Title							
1	A23PCHE101	Industrial Products							
2	A23PCHE102	Material Science							
3	A23PCHE103	Chemistry Of Heterocyclic And Natural Products							

Discipline Specific Elective – II (Offered in Semester II)								
Sl. No.	Course Code	Course Title						
1	A23PCHE204	Cheminformatics						
2	A23PCHE205	Asymmetric Synthesis						
3	A23PCHE206	Green Chemistry						

Discipline Specific Elective – III (Offered in Semester III)							
Sl. No.	Course Code	Course Title					
1	A23PCHE307	Bioorganic Chemistry					
2	A23PCHE308	Basics of forensic Science					
3	A23PCHE309	Polymer And Plastics					

Discipline Specific Elective – IV (Offered in Semester IV)							
Sl. No.	Course Code	Course Title					
1	A23PCHE410	Pharmaceutical Chemistry					
2	A23PCHE411	Inorganic Chemistry-IV					
3	A23PCHE412	Stereochemistry					

-

Department	Chemistry	Programme	: M.Sc. (Chemis	stry						
Semester	First	Course Cate	gory Co	ode: DS	SC *End Se	mester	Exam Ty	/pe: TE			
Course Code	A00DOUT404	Periods/We	ek		Credit	Ма	aximum	Marks			
	AZ3PCH1101	L	Т	Р	С	CAM	ESE	TM			
Course Name	INORGANIC CHEMISTRY - I	4	-	-	4	25	75	100			
Prerequisite	Basic Knowledge studied in the	UG Level									
	To study the periodic table and atomic structure.										
	• To know the chemistry of covaler	nt bond.									
Course	• To study the cement, glass and c	ceramics.									
Ohiectives	 To analyze the transition and inn 	 To analyze the transition and inner transition elements. 									
Objectives	 To acquire knowledge about the 	different nuclea	ar reactio	ns and a	applications						
	On completion of the course, the	e students will	be able	to			BT Map (Highest I	ping Level)			
	CO1 Comprehend the electronic elements	of	К3								
Course	CO2 Apply the concepts of VB, M of molecules	cture	К3								
Outcome	CO3 Illustrate acid-base concept on acid base strength	cts	К3								
	CO4 Students should able to lear elements and their application	rn about the che ons.		К3							
	CO5 Understand nuclear Chemis	stry					К3				
UNIT-I	ATOMIC STRUCTURE AND PI	ERIODIC TAE	BLE		Periods:	12					
Modern views of functions and quantum numbe Electronic config uses: computa underlving reasc	on atomic structure: wave mecha orbital energies, angular functi ers- Aufbau principle - Zeeman Effe guration - Electron Angular momentu tion of and radii of atoms anion ons.	nical descript ons and orbit ect - Stability o um in atoms Ef s. Modern per	ion of e tal shap f ha fective r riodic tab	electron bes. Qu alf-filled nuclear ble: perio	and orbita antum num and comple charge- Sl odic properti	ls, radia bers - Th etely fillec ater rule es, trend	I density neories of orbitals- and their s and their	f - ; ; CO1			
UNIT-II	COVALENT BOND				Periods:	12					
Molecular topo hybridization a molecular orb approximation diagrams of h packing of atom	ologies: shared and lone pairs and and geometry, VSEPR model, a itals formed from atomic orbit (SCF), LCAO- MO model, TASO, nomo diatomic and hetero dinu hs in metals, band theory of metals ACID- BASE THEORY AND SO	Lewis structu and Bent's ru al overlap, LUMO, and H clear molecu s and metallic LVENT SYST	res, isoe ile. Mole Extende IOMO co les (CO propertie	electror ecular ed Huc oncepts o, NO, es, inst	nic and isola Orbital The kel theory in bondin and HCl). I ulators, and Periods:	able rela eory: Sy of Ha g. MO e Bonding I semico 12	ationship mmetry rtree-Foo nergy lev in metal onductors	s, of ck /el ls: 3 CO2			
	AND BASE INEURI AND SU					12					
Acid-Base theori base strength, F Hard and Soft a and uses of solv ionizing solvents	ies: Bronsted-Lowry, Lux-Flood, Usa Factors affecting the strength of acie cids and bases – symbiosis – theore vents – protic, aprotic, superacids, n s. Typical reactions in non-aqueous	novich, Lewis a ds and bases (etical basis of h nolten salts as solvents- liquid	nd solve Common ardness solvents, HF, liqui	nt syste i ion eff and sof , ionic lic d SO ₂ , l	m definitions ect and Hen tness. Class quids (gel ef iquid NH ₂ . ai	, measure derson's ification, fects) pro nd Sulphi	es of acid equation properties operties o uric acid.	- 3 f CO3			

UNIT-IV TRANSITION & INNER TRANSITION ELEMENTS Periods: 12

S.S.N

M.Sc Chemistry

Transition elements - general characteristics - Inner transition elements - position in the periodic table - electronic configuration, oxidation states, solubility, colour and spectra, magnetic properties - separation of lanthanides - lanthanide contraction: causes and consequences - gadolinium break, shift reagents - extraction of thorium and **CO4** uranium- comparison of actinides and lanthanides.

UNI	Γ-V	NUCLEAR CH	IEMISTRY		Period	s: 12		
Radioactive decay and equilibrium- Different types of nuclear reaction – spallation –fission and fusion. Theories of fission. Fissile and Fertile isotopesNuclear fusion – stellar Energy-Nuclear forces:Liquid drop model, shell Model- Calculation of Q-values – Cross section. Detectors: Scintillation counter, Gas Ionisation chamber. Proportional Counter, Cerenkov Counter- Accelerators: Cyclotron, Synchrocyclotron, Betatron. Radio isotopes and their Applications: Activation analysis, Isotopic dilution technique-radiometric titration. Nuclear reactors: Types (Thermo nuclear and breeder reactors) feed materials production. Reprocessing of nuclear materials waste disposal. Lecture Periods: 60 Tutorial Periods:- Practical Periods:- Total Periods:60								
Lect	ure Peri	ods: 60	Tutorial Periods:-	Practical Periods:-		Total Periods:60		
Text	Books							
1. 2. 3.	Huheey, Cotton, F New Yorl Purcell, F	J. E.; Keiter, E. ⁻ . A.; Wilkinson, k, 6 th Edition, 198 K. F.; Kotz, J. C. '	A. Keiter, R. L. "Inorganic C G.; Murillo, C. A.; Bochma 8. Inorganic Chemistry" Saunc	hemistry", Harper and F Inn, M. "Advanced Inor ders: Philadelphia, 2nd E	Row:New ganic Che Edition, 19	York, 4 th Edition,1983. emistry", Wiley Intersci 76	ence:	
Refer	ence Boo	ks						
1. 2.	Moeller, Shriver, 2001.	T. "Inorganic Che D. F.; Atkins, P.	emistry, A Modern Introducti W.; Langford, C. H. "Inor	on", John Wiley: New Yo ganic Chemistry", 3rd o	ork, 1982. ed.; Oxfo	rd UniversityPress: Lo	ndon,	
 Stout, G. H.; Jenson, L. H. X-Ray Structure Determination, 2nd ed.; John Wiley & Sons: NewYork,1989. West, A. R. Solid State Chemistry and its Applications, John Wiley & Sons: New York,1989. Rhodes, G. Crystallography Made Crystal Clear: Academic Press. Inc.: New York, 1993. 								
Web	Reference	es						
1.	https://n	ptel.ac.in/						

- 2. https://ocw.mit.edu/courses/chemistry/
- 3. https://swayam.gov.in

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Conti	End Semester	Total				
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks	
Marks	10		5	5	5	75	100	

S.A.h

Department	Chemi	stry	Programme	e: M.Sc.	Chem	istry					
Semester	First		Course Cat	egory C	ode: D	sc *End S	emester	Exam Ty	/pe: TE		
Course Code	A23P0	CHT102	Periods/We	eek		Credit	Maximum Marks				
Course Coue			L	Т	P	С	CAM	ESE	TM		
Course Name	ORGA	NIC CHEMISTRY - I	4	-	-	4	25	75	100		
Prerequisite	Basic	Knowledge studied in the L	JG Level	L	1			1	I		
	• To	To learn basic organic mechanism and study the rate law									
• Course Objectives	• To	 To analyze various types of rearrangement reactions 									
	• To	 To understand about oxidation and reduction reaction in the organic compounds 									
	• To st	 To study the stereochemistry with configuration 									
	• To e\	 To evaluate the design and synthesis of new organic compounds. 									
	On cor	On completion of the course, the students will be able to BT Mapping(Highest Level)									
	CO 1	Recall the basic principle law	s of organic rea	action me	echanis	m and rate		К3			
_	CO 2	Understand the various ty	pes of rearrange	ement rea	action		К3				
Course	CO 3	Categorize the reaction	based on oxida	ation and	l reduc	tion.		К3			
Outcome	CO 4	predict the reaction mecha stereochemistry of organic	anism of organic c compounds	reaction	s and		К3				
	CO 5	Design and synthesize n stereochemistry of organic	ew organic con c compounds	npounds	by cor	relating the	К3				
UNIT-I	MECH	IANISMS AND METHO	ODS			Periods:	12				

Types of mechanism; Reagents and reactions. Thermodynamic and kinetic requirements of reactions; Baldwin rules for ring closure; Hammond postulate; microscopic reversibility and Marcus theory Methods of determining mechanism: Non-kinetic methods: identification of products and intermediates; isotopic labelling; stereo chemical evidences; isotopic effects; cross-over experiments, trapping of intermediates. Kinetic methods- determination of rate law and rate constants; relation of rate with the mechanism of reaction.

UNIT-II	REARRANGEMENT REACTIONS	Periods: 12	

Types of rearrangements: Nucleophilic; free radical and electrophilic reactions. Mechanisms: Nature of migration; migratory aptitude and memory effects, ring enlargement and ring contraction rearrangements. Reactions: Wagner-Meerwin and related reactions, Benzil- benzilic acid, Favorskii, Hofmann and related rearrangements, Beckmann, Neber, Baeyer-Williger, Stevens. Claisen rearrangements, boron-carbon migration, Non- 1,2-rearrangements, **CO2** Fischer- indole synthesis, Arndt- Eistert synthesis.

UNIT-III OXIDATION AND REDUCTION REACTIONS Periods: 12

Mechanisms: direct electron transfer, hydride transfer, displacement_ addition- elimination and formation of ester intermediates. Oxidation Reactions: Aromatization of six membered rings; dihydro elimination; oxidation of alcohols and dehydrogenation of amines; Reactions involving cleavage of C- C bonds; ozonolysis; cleavage of double bonds; oxidative decarboxylation. Reduction Reactions involving replacement of oxygen by hydrogen: - Wolff Kishner and Clemmenson reductions; Removal of Oxygen from substrate; Reduction with cleavage; Reductive coupling.

UNIT-IV S	STEREOCHEMISTRY-I	Periods: 12
		Ferious. 12

S.A.h

Optical isomerism due to asymmetric carbon atoms Racemic modifications; racemization; thermal, anion, cation, reversible formation Epimerisation; mutarotation; I and II order asymmetric transformations Resolution of racemic modifications; asymmetric transformations; asymmetric synthesis destruction; Cram's and Prelog's rules; absolute asymmetric synthesis. Criteria for optical purity; D, L, R, S- notations; Cahn- Ingold- Prelog rules, absolute and relative configuration; configurations of allenes ,spiranes, and biphenyls.

UNIT-V STEREOCHEMISTRY-II Periods: 12

Conformation and reactivity of acyclic systems; intramolecular rearrangement; neighbouring group participation; Curtin-Hammet principle. Stability of six and seven-membered rings; mono and disubstituted cyclohexanes; conformation and reactivity in cyclohexane systems. Fused and bridged rings; bicyclic and polycyclic systems; decalins and Brett'srule. optical rotation and optical rotatory dispersion; conformational asymmetry, ORD curves; octant rule; configuration and conformation; Cotton effect; axial haloketone rule; Determination of configuration. Stereo selective synthesis: Synthesis of yohimbine, reserpine

Lecture Periods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60	
Text Books	-			

J. March and M. Smith, Advanced Organic Chemistry, 5th edn, John-Wiley and Sons.2001.
 E.S. Gould, Mechanism and Structure in Organic Chemistry Holt, Rinehart and Winston Inc., 1959.

3. E.L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw Hill, (2000)

Reference Books

- 1. P.S. Kalsi, Stereochemistry, 3rd edition, New Age International Publishers, 1995.
- 2. I.L. Finar, Organic chemistry, Vol-1, 6th edition, Pearson Education Asia.2004
- **3.** F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A and B, 4th edition, Kluwer Academic/Plenum Publishers. 2000.

Web References

1. https://bit.ly/3zT4PUq

2. https://www.organic-chemistry.org/

3. https://www.studyorgo.com/summary.php 4

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

Assessment		Cont	tinuous Ass	End Semester	Total		
	САТ	T CAT Model		Assignment*	Attendance	(ESE) Marks	Marks
XZ	-					22	1-h

			1	2	Exam							
	Marks		1	.0	5	5	5	5	75	1	L00	
L		* Appli	cation o	riented /	Problem sol	ving / Design / Ar	alytical in c	ontent b	eyond the syll	abus		
Depa	artment	Chen	nistry			Programm	ne: M.Sc.	Chemi	stry			
Semo	ester	First				Course Ca	tegory C	ode: D S	sc *End Sei	mester	Exam T	Гуре: ТЕ
Cour	rse Code	A23PCHT103				Periods/W	/eek		Credit	Ma	aximun	n Marks
Cour	se coue					L	T	Р	С	CAM	ESE	TM
Cour	se Name	PHYS	SICAL	CHEMI	STRY - I	4	-	-	4	25	75	100
Prere	equisite	Basic	: Knowl	edge stı	idied in the	UG Level	t.		.			
C Ob	ourse jectives	 To To To To To 	o study s applic o expo o give a o unde o give i	y the functions se the indext and in-decomposition of the function of the func	ndamental deas on the epth knowle the concep nto the appl	principles of (eories of react edge on therm ts of statistical ications of the M	Quantum ion rate odynamic thermody 1-B, B-E a	Chemis s ynamics nd F-D s	try, Schrodi	nger wa	ave equ	ation and
Cou Outc	urse come	CO1 CO2 CO3 CO4	n completion of the course, the students will be able toBT Mapping(Highest Level)CO1Identify the limitations of classical mechanicsK3CO2Apply the quantum chemistry to solve the Schrödinger wave equation for one, two and three dimensional boxK3CO3Gain knowledge on theories of reaction rates and applications of reaction kinetic chemistryK3CO4Illustrate the relationship between microscopic properties of individual atoms and molecules with macroscopic thermodynamic observables and derive the different types of distribution laws.K3									
ואט	Г-I	QUA	NTUM	CHEMI	STRY				Periods:	12		

Inadequacy of classical mechanics, Black body radiation, Planck's quantum concepts, Photoelectric effect. Bohr's theory of hydrogen atom: Hydrogen spectra, de Broglie principle, Uncertainty principle, Inadequacy of Bohr theory. Wave equation, Derivation of time dependent and independent Schrodinger equation- Postulates of quantum mechanics, well behaved function- orthogonality and normalization. Operator algebra: operator, linear and hermitian, Verification of operators Hamiltonian - Eigen functions and Eigen values, angular momentum operator, communication relations, related theorems. Applications of wave mechanics to simple systems – particle in a box, one, two and three – dimensional, distortion of the box, quantum numbers, zero – point energy, finite potential barrier.

UNIT-II	CHEMICAL KINETICS – I	Periods: 12	

Theories of reaction rates and reaction mechanism - Arrhenius equation -Potential energy surfaces and reaction coordinates - Collision theory – ARRT(thermodynamic treatment only)–Applications of ARRT to unimolecular, bimolecular and termolecular reactions - Kinetic isotope effect, iso kinetic relation and temperature - Theories of unimolecular reactions – Lindemann and RRK - Principle of microscopic reversibility-Steady state approximation Chain reactions. Thermal and photochemical reactions between hydrogen and halogens – Explosions and hydrogen – oxygen reactions.

UNIT-III	CHEMICAL KINETICS – II	Periods: 12	

D.D.h

M.Sc Chemistry

Application of ARRT to solution kinetics - Factors affecting reaction rate in solution-. Internal pressure - Solvent dielectric constant - Ionic strength -Hydrostatic pressure - Ion-dipole and dipole-dipole reactions – van't Hoff equation and volume of activation - Catalysis Characterics of a catalyst –Factors affecting Catalytic reactions - Types of Catalysis - homogeneous catalysis – Acid base catalysis – Van't Hoff and Arrhenius intermediates-Mechanism - protolytic and prototropic catalysis laws - Acidity functions -Hammett - Zucker hypothesis - Catalysis in biological systems. Michaelis -menten equation – Lineweaver - Burk and Eadie-Hofstee plots - influency of substrate concentration, pH, and temperature on rate - Influence of substituent's on reaction rates – Hammett and Taft equations - Linear free energy relations.

equations - Lin									
UNIT-IV	FUNDAME	IALS	OF STATE	STICAL I	HERMODY	NAMICS F	Periods: 12		
Statistical meth	nod - microsta	ates- maci	o states -	permutatio	ns and com	nbinations - d	combinatory r	rule - probabili	ty
theorems - en	sembles - pha	ase space	- thermod	lynamic pro	obability - s	tatistical equi	ilibrium - Ma	xwell Boltzmar	
statistics - der	vation of M.B	. statistics	- relations	ship betwee	en entropy	and probabili	ty - heat cap	acity of solids	- CO4
Einstein and De	ebye models -	statistical	meaning of	third law o	f thermodyn	amics.			
UNIT-V	APPLICATI	ONS OF	STATISTI	CAL THE	RMODYNA	AMICS F	Periods: 12		
Partition function	ons - molar- 1	ranslation	al- rotation	al and vibr	ational part	ition functions	s of diatomic	and polyatom	ic
molecules - se	paration of pa	rtition fund	ction accord	ding to form	ns of energy	-partition fun	ction and vib	rational energy	· - CO5
total partition function - electronic partition function-derivation of thermodynamic quantities E, S, A, H, G, K and Cp,									
Cv using partition function-Sackur-Tetrode equation - Bose - Einstein statistics - Fermi - Dirac statistics -electronic									
heat capacity of	of gases - equ	ipartition (of energy -	classical a	nd quantum	statistical the	eory of heat of	capacities - he	at
capacities for a	uantum statist	cule - rota	tional neat	capacity of	nyarogen i	molecule - nu	iclear spin sta	atistics - nucle	ar
			• • - •						
Lecture Peri	ods: 60	Tuto	rial Perio	ds:- l	Practical F	Periods:-	Tota	l Periods:60	
Text Books									
1. R.K.Prasad	- Quantum Ch	emistry - I	New Age In	ternational	(P) Ltd. Pub	lishers, New	Delhi,3rd Edit	ion 2006.	
2. Puri, B.R. a	nd Sharma, L.	R. and Ma	adan S.Patl	hania, "Prin	nciples of Ph	nysical Chemi	istry", Vishal I	Publishing 48 ^{tt}	'Edition,
2021							0004		
3. B.G.Kyle - C	nemical and P	rocess In	ermodynan	nics - Prent	ICE Hall of Ir	ndia, 3 Editio	n, 2004.		
Reference Boo	KS								
1. Ira N. L	evine - Quant	um Chem	stry - Prent	ice Hall of I	ndia, New D	Delhi, 5 th Editio	on, 2006		
2. KeithJ.	Laidler - Chen	nical Kinet	cs - Pearso	on Edition C	Company Pv	t. Ltd., Third E	dition, 2005.		
3. M.C.G	upta - Statistic	al Thermo	dynamics -	New Age Ir	nternational,	2^{11} Edition, 2	2003.		0005
4. R.C.Sr	ivatsava, Subi	t K. Saha,	Abhay K. J	ain - Therm	iodynamics:	A Core Cour	se -PHC Pvt.	Ltd., 2 th Editio	n, 2005.
web Reference	25								
1. https://	chem.libretext	s.org/Coui	ses/Mount	RoyalUnive	rsity/Chem1	201/Unit1%3	AQuantumCh	emistry	
2. http://w	/ww.yorku.ca/s	stynes/kind	lvs309.pdf	•					
	sites krieger ih	u.edu/jare	d-kaplan/fil	es/2018/11	/StatisticalN	lechanicsNote	es.pdf		
 https:// 	oncoontinogoriji								
3. https:// COs/POs/PS	SOs Mapping								
3. https:// COs/POs/PS	SOs Mapping	Progra	m Outcome	es (POs)		Program S	pecific Outco	mes (PSOs)	
3. https:// COs/POs/PS COs	SOs Mapping PO1	Program PO2	n Outcome PO3	es (POs) PO4	PO5	Program S PSO1	pecific Outco PSO2	mes (PSOs) PSO3	
3. https:// COs/POs/PS COs	50s Mapping PO1 3	Program PO2 3	n Outcome PO3 3	es (POs) PO4 3	PO5	Program Sp PSO1 3	pecific Outco PSO2 3	mes (PSOs) PSO3 3	
3. https:// COs/POs/PS COs 1 2	For solution of the sol	Program PO2 3 3	n Outcome PO3 3 3	es (POs) PO4 3 3	PO5 3 3	Program S PSO1 3 3	Pecific Outco PSO2 3 3	mes (PSOs) PSO3 3 3	
3. https:// COs/POs/PS COs 1 2 3	PO1 3 3 3 3 3	Program PO2 3 3 2	m Outcome PO3 3 3 3	es (POs) PO4 3 3 3	PO5 3 3 2	Program S PSO1 3 3 3	PSO2 3 3 3 3	mes (PSOs) PSO3 3 3 3 3	
3. https:// COs/POs/PS COs 1 2 3 4	PO1 3 3 3 3 3 3 3 2 2 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	Program PO2 3 3 2 3	m Outcome PO3 3 3 3 2	es (POs) PO4 3 3 3 1	PO5 3 3 2 2	Program S PSO1 3 3 3 2	PSO2 3 3 3 3 3 3 3	mes (PSOs) PSO3 3 3 3 2	
3. https:// COs/POs/PS COs 1 2 3 4 5	PO1 3 3 3 2 3 3 3	Program PO2 3 3 2 3 3 3 3 3	m Outcome PO3 3 3 3 2 3 3	es (POs) PO4 3 3 3 1 3	PO5 3 3 2 2 2 3	Program S PSO1 3 3 3 2 2 3	Pecific Outco PSO2 3 3 3 3 3 3 3 3 3	mes (PSOs) PSO3 3 3 3 2 3 3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

Assessment	Continuous Assessment Marks (CAM)	End Semester	Total
------------	-----------------------------------	--------------	-------

\$. A:b

	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	.0	5	5	5	75	100

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

Department	Chemist	ry	Programm	ne: M.S	Sc. Chen	nistry					
Semester	First		Course Cat	egory	Code: DSI	E *End S	emester	Exam Typ	oe: TE		
Course Code	A23PCH	IF101	Periods/W	/eek		Credit	Ma	aximum	Marks		
Course Coue	/ ==01 011		L	T	Р	С	CAM	ESE	TM		
Course	INDUSTF	RIAL PRODUCTS	4	-	-	4	25	75	100		
Name											
Prerequisite	Basic Kno	wledge studied in the UG Leve	el	L	II			1			
	• To acqu	ire the knowledge on cement a	and glass ma	nufacti	uring						
	 To study 	v the paints manufacturing and	l various con	stituent	S						
Course	 To know 	 To know chemistry of fiber, plastic and rubber 									
Objectives	To study the industrial gasses and petroleum products										
	 To analyze the various cosmetics products. On completion of the course the students will be able to 										
	On completion of the course, the students will be able to BT Mapping(Highest Level)								t Level)		
	CO1 Understand the manufacture processes of cement, glass their K3										
~	CO2 Ab	le to classify dyes, pigments ar		К3							
Course	CO3 ^{Un}	derstand the importance of pla		К3							
Outcome	CO4 Ex	plain the petroleum and fuel ga	zers.	К3							
	CO5 Illu det	strate the preparation and ergents.	uses of sh	ampoo	, dye, s	oap and		K3			
UNIT-I	CEMENT	AND GLASS			F	Periods:	12				
Cement - analys	sis of major o	constituents, Composition, differ	rent methods	of mai	nufacturin	g and uses	s - Portlar	nd cemen	t -		
Composition, di	ifferent met	thods of manufacturing (Wet a	and Dry proc	ess), u	ses – Set	ting and h	ardening	of cemer	nt,		
Glass- Compo	osition, Typ	pes of glasses, method of m	anufacturing	- Mel	ting, Blow	ing, Pres	sing, Anr	nealing ar	nd CO1		
finishing- chemi	ical and phy	vsical properties of glass.									
UNIT-II	PIGMEN	TS, DYES AND PAINTS			F	Periods:	12				
Paints - Primary	y constitue	nts of paints, Composition, Ty	pes, Manufa	cture a	nd testing	of Paints	Dispersi	on mediu	m co2		
(solvent), binde	er Pigment	ts, formulation of paints. Re	equirements	of a	good pai	nt. Pigme	nts - Cla	assificatio	n, 🗸 🗸		
Manufacture an	d uses. Dy	es - Classification, preparation	n, dyeing proo	cesses.	•						
UNIT-III	FIBERS,	PLASTICS AND RUBBER			F	Periods:	12				

Fibres – definition - difference between Natural and synthetic fibres-properties of synthetic fibres - Artificial silk, rayon, nylon and Terylene Plastics - composition, Classification, manufacture, properties and uses recycling of plastics Rubber: types of rubber-synthetic rubber- natural rubber - Vulcanizations of Rubber- properties and uses of rubber.

S.A.h

UNIT-IV	FERTILIZERS AND FUELS Periods: 12								
Fertilizers -Typ gas, producer and octane nun	es of Fertilizers: gas, and oil gas nber, LPG.	Organic and Inorganic fertil . Petroleum: synthetic petro	izers, Preparation and us ol manufacturing, refining	es, Fuel Gases: coal gas, water , cracking, reforming, knocking					
UNIT-V	COSMETICS			Periods: 12					
Shampoo- com preparation. Ha and cold proces	position and its p air dyes - chemic ss, classification	preparation, lipstick -prepara al and herbal dyes. Perfum of soap, cleansing of soap a	ation, Face cream and faces and Deodorants. Soap and classification of deterg	ce powder composition and their (CO5): manufacture of soaps by hot gents (anionic and cationic).					
Lecture Peri	ods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60					
Text Books									
B.K. Sharma, – 2. Joseph Henr 3. M Kelway Ba Trade Press, 1s Beference Boo	–Industrial Chem y Stephenson, – ambe, – A Text E t Edition, 2018.	nistryll, Goel publishing hous -Industrial Chemistry—, Leo Book on the Chemistry and A	e, 6th Edition, 2011. opold Classic Library, 1st E Agriculture of Teall, Frank	Edition, 2015. lin Classics					
	N3								
B.N.Chakrabar 2. P.P.Singh, T 1983. 3. O.P. Verama	ty, "Industrial Che .M.Joseph, R.G.I ani, A.K. Narula, '	emistry", Oxford & IBH Publi Dhavale, "College Industrial 'Industrial Chemistry", Galgo	ishing Co, New Delhi, 4տ Chemistry", Himalaya Pu otia publication Pvt. Ld, 1։	Edition, 1981. Iblishing House, Bombay, 4th Edition., _{st} Edition, 2004.					
Web Reference	es								
1. https://www.t 2. https://www.t 3. http://www.fa	toppr.com/guides pritannica.com/so Izongroup.com/o	/business-environment/scal cience/pollution-environmen pur-products-and-services/fu	les-of-business/small-sca t iel-for-industry	le-industries/					

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

8. Sil

		Cont	tinuous Ass	CAM)	End Semester	Total	
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

Department	Chem	emistrv Programme: M.Sc. Chemistrv											
Semester	First		Course Ca	tegory	Code: D	SE *End S	emester	Exam Ty	pe: TE				
Course Code	A23P	CHE102	Periods/V	Periods/Week			lit Maximum M		Marks				
Course Objectives Course Course Course Course Objectives			L	T	P	С	CAM	ESE	TM				
Course	MATE	RIAL SCIENCE	4	-	-	4	25	75	100				
Name													
Prerequisite	Basic	Knowledge studied in the UG Lev	/el	i	<u>.</u>			<u>.</u>					
	•	To understand the crystal struct	ure, growth	methods	s and X-r	ay scatterir	ng						
	To explain the optical, dielectric and diffusion properties of crystals												
Course	•	To recognize the basis of semiconductors, superconductivity materials and magnets											
Objectives	•	To study the synthesis, classification and applications of nanomaterials											
	To learn about the importance of super conductors												
	On co	mpletion of the course, the stud		BT Mapping(Highest Level)									
	C01	CO1 Understand X-ray structure determination and identification of K3											
Course	CO2	Analyze the magnetic properties		К3									
Outcome	CO 3	Apply the x-ray diffraction in the	e study					К3					
	CO4	Utilize ceramics and nanomateri	als in the sc	ientific a	applicatio	ons	К3						
	CO5	Harvest solar energy in the ener	gy productio	on.			К3						
UNIT-I	NIT-I STRUCTURE OF SOLIDS Periods: 12												

Introduction to solids – Crystalline and Amorphous unit cell – Bravais lattice and x-ray structure determination (NaCl and KCl only), Powder and single crystal – methods and its application with NLO properties – Identification of the cubic lattice and indexing of the x-ray diffraction lines Radius ratio rules – co-ordination number packing arrangement – different structure types in Solid – rock salt, Zinc blende wurzite, fluorite and antifluorite, spinel and inverse – spinel and perovskite structures.

UNIT-II MAGNETIC PROPERTIES

Periods: 12

Types of Magnetism – Dia – Para – Ferro and anti-ferromagnetism. Magnetic properties of free ions – First order second order Zeeman Effect – states KT – States, KT Determination of Magnetic moments and their application to elucidation of structures of inorganic compounds temperature – temperature independent paramagentism. Magnetic

S.A.h

properties of lanthanides and actinides – orbital contribution to magnetic moment, range of µeff for various **CO2** complexes Guoy's method spin crossover in co-ordination compounds

UNIT-III	X-RAY DIFFR	ACTION	-	Periode	:: 12	
X-ray diffracti types, glid pla density – pha measurement	on by single cryst nes and screw axi lse problem. Elect technique. Neutro	al, space groups – system s- x-ray intensities, structure fron diffraction by gases – n diffraction by crystals – m	natic absences in x-ray e factor (R-value) and its scattering intensity vs agnetic scattering – me	data and s relation to scattering asurement	identification of lattice o intensity and electron angle, wierl equation techniques.	CO 3
UNIT-IV	CERAMICS			Periods	s: 12	
Ceramics – ty glasses types Nano materia tubes.	rpes and application , glass – glass forr I preparation (both	on – composites – classifica ning ability of alloys – melt s om up and top down appre	ation – processing of fik spinning process – appl oaches) proportion and	er Reinfor ications – its applica	ced plastics – metallic shape memory effect – ation – carbon – nanc	CO4
UNIT-V	SUPER CONE	DUCTORS		Periods	:: 12	007
Super conduc thermal conve solar cells, si	tors – materials – ersion , Solar elec icon, Cadmium su	Basic concept – types cha tric coating enhanced sola lphide and Gallium arsenic	racteristics - applicatio ar thermal energy colle – organic solar cells.	n solar en ction – pr	ergy materials – Photo otovoltic conversion -	CO 5
Lecture Per	iods: 60	Tutorial Periods:-	Practical Periods:-		Total Periods:60	
Text Books			•			
. 1. S. Mohan 2. Arumugam 3. Giacavazz Publications. 2	and V. Arjunan, P , Materials Science coet. al., Fundan 2010	rinciples of Materials Scienc a, Anuradha Publications, 20 nentals of Crystallography	e, MJP Publishers, 201 007. /, International Union	6. of Cryst	allography. Oxford S	Science
Reference Bo	oks					
 Woolfson, James F. PEARSOI P.K. Palar T. Balach 	An Introduction to Shackelford and N Press, 2007. hisamy, Materials andran, Materials	Crystallography, Cambridg Madanapalli K. Muralidha Science, Scitech Publicatior Science, Charulatha Publica	e University Press, 201 ara, Introduction to Mat as, India, 2002. ations, India, 2003.	2. erials Scie	ence for Engineers. 6	ith ed.,
Web Referen	ces					
1. http:// 2. http://	xrayweb.chem.ou. www.uptti.ac.in/cla	edu/notes/symmetry.html. ssroom-content/data/unit%	20cell.pdf.			

3. https://bit.ly/3QyVg2R

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

S.S.h

		Cont	tinuous Ass	End Semester	Total		
Assessment	CAT 1	CAT 2	Model Exam	Model Assignment* Attendance	Attendance	Examination (ESE) Marks	Marks
Marks	1	.0	5	5	5	75	100

\$. \$. h

Department	Chem	nistry	Programr	ne: M.S	Sc. Che	emistry				
Semester	First		Course Ca	tegory (Code: D	SE *End S	Semester	Exam Ty	pe: TE	
Course Code	A23P0	CHE103	Periods/V	Veek		Credit	Ma	Maximum M		
			L	Т	Р	С	CAM	ESE	TM	
Course		NATURAL PRODUCTS	4	-	-	4	25	75	100	
Name										
Prerequisite	Basic	Knowledge studied in the UG Leve	el							
	• To C	lassify heterocyclic - nomenclatur	e, structure,	biosynt	thesis, c	occurrence,	analysis			
		d pharmaceuticalperspectives of lucidate the structure of alkaloids	natural prod	ucts						
Course	• To st	tudy the biological importance of t	ernenes							
Objectives	• To le	earn about steroids with biological	importance							
	• To ki	now the structure and synthesise of	of anthocyar	nins						
	On co	mpletion of the course, the stud	ents will be	e able to)		ВТ Марр	ing(Highes	t Level)	
	C01	Understand the basic concepts of	fbiomolecul	es and r	natural p	products.		К3		
Course	CO2	Integrate and assess the different structurally different natural production	t methods of ucts.	f prepara	ation of			К3		
Outcome	CO 3	CO3 Illustrate the applications of biomolecules and their functions in the K3 metabolism of livingorganisms.								
	CO4	Analyse and rationalise the struct	ure determi	nation of	f steroic	ls		К3		
	CO5	Analyze nature and structure of a	nthocyanins	;				K3		
UNIT-I	HETE	ROCYCLIC CHEMISTRY				Periods:	12			
Nomenclature only – indole, chromans, chr	reac isoind omons	ctivity – aromaticity – spectral dole – oxazole, imidazole, th , coumarins, carbazoles, uraci	properties niazole, py I, uric acid	s.Eleme /ridines xanthi	entary s , pyrin iones a	study of the nidine, py and flavond	e followin ridazine, iids.	g systen pyrazin	ns e, CO1	
UNIT-II	ALKA	LOIDS				Periods:	12			
General meth Belladine, Pap	ods of baverin	structural elucidation of alkalo e, Cocaine, Atropine, Heptaphy	oids – a ge ylline, Peej	eneral s ouloidin	survey. 1, Morp	The struc hine.	tural elu	cidation	of CO2	
UNIT-III	TERP	PENES				Periods:	12		L	
General meth	ods of	determination of structure. Str	uctural elu	cidatior	n of Ca	mphor, Ca	adinene,	Vitamin /	Α,	
Abietic acid, G	Sibbere	lic acid, Zinziberine and Squal	ene						CO 3	
UNIT-IV	STE	ROIDS				Periods:	12			
Conformations Synthesis of s cholestrol, an included for ex	s of st steroids drogen xamina	ereoids - molecular rearranges - ring forming reaction and co s, oestrone, progesterone and tion)	ements (a ontrol of rir l cortisone.	cid and ng junct (quest	base tion ste tions o	catalysed, ereochemi n complete	photoch stry. Syn e synthes	nemical). thesis of sis is not	C04	

\$. \$. h

UNI	T-V ANTHOCY	ANINS		Periods: 12	
Gene antho Flavo	eral nature of anthocy ocyanidins. Structural ones – flavonols – isof	anins – structure of the a elucidation of cyanidin ch avones. Biosynthesis of fl	anthocyanidins. Gene nloride, pelargolidin c avonoids – depsides -	ral methods of synthesizir hloride, Hirsutidin chlorid - tannins.	ng e. CO5
Lect	ure Periods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:6	50
Text	Books				
1. 2. 3. Refer	O.P. Agarwal, Chemistr L. Finar, Organic Chemis M. P. Singh and H. Pand Ahluwalia, Steroids and I rence Books	y of Organic Natural Produc stry Vol-2, 5 th edn, Pearson Ed a, Medicinal Herbs with their fo Hormones, Ane books pub., N	ets, Vol.1, Goel Publish ducation Asia, 1975. ormulations, Daya Publis lew Delhi, 2009.	ing House,Meerut, 1997. shing House, Delhi,2005. 6. V	. К.
1. 2. 3. 4.	I. L. Finar, Organic Cherr Pelletier, Chemistry of Al Shoppe, Chemistry of the I. A. Khan, and A. Khanu Publications, Hyderabad	histry Vol-1, 6thedition, Pearso kaloids, Van Nostrand Reinho e steroids, Butterworthes, 199 m. Role of Biotechnology in n , 2004.	on Education Asia, 2004 old Co, 2000. 4. nedicinal & aromatic pla	nts, Vol 1 and Vol10, Ukkaz	
Web	References				
1. 2. 3.	https://bit.ly/39LXStz https://www.organic-ch https://www.studyorgo.	emistry.org/ com/summary.php			

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

		Cont	tinuous Ass	End Semester	Total		
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	.0	5	5	5	75	100

X2

S.S.N

Department	Commerce	Commerce and Management Programme: M.Sc. Chemistry									
Semester	First		Course Ca	tegory (Code: S	EC *End S	Semeste	r Exam T	ype:		
Courso Codo	A23PCMS102	2	Periods/V	Veek		Credit	Ma	aximum l	Marks		
Course Coue			L	T	Р	С	CAM	ESE	TM		
Course	PROFESSIO	NAL SKILLS	2	-	-	2	100	-	100		
Name											
Prerequisite	Intra- persona	l skills and basic for con	nmunication	skills				1	I		
	To ena	able the students to un	derstand th	e impor	tance	of Interpers	onal and	l Team sł	kills.		
	• To Acc	quire Different Interper	sonal and T	eam sk	kills to b	be an empl	oyable p	erson.			
~	To kno	w how to communicat	te in an emo	otionally	[,] intellig	gent way.					
Course	To ide	ntify needed information	on and/or el	iminate	extran	eous inforn	nation to	wards so	ving		
Objectives	To act	nieve the desired resul	t of a good	employa	ability t	hrough Tea	am work.				
								ВТ Марр	ng		
	On completior	of the course, the stu	dents will be	e able to)			(Highest Le	evel)		
	CO1 Remem	ber the various Interpe /el	ersonal skill	requirer	ments i	in organizat	tional	К3			
Course	CO2 Underst different	and the need for diff coccasions	ferent comn	nunicatio	on skill	requireme	nt at	К3			
Outcome	CO3 Underst	and what Emotional Inte	lligence is ar	nd why it	is impo	ortant		К3			
	CO4 Demons	strate a good Problem so	olving skill in	work en	vironme	ent		К3			
	CO5 Demons	strate their ability in team	work to ach	ieve des	ired res	sult		К3			
UNIT-I	INTRODUCTI	ON TO INTERPERSO	DNALSKILL	•		Periods:	6				
Introduction to	o Interpersona	l skills – definition –	Importance	of inte	rpersor	nal skills -	Develop	ina Your			
Interpersonal	Skills – Types	of Interpersonal relati	ionships – ι	uses of	Interpe	ersonal rela	tionship	s skills –			
Factors affect	ing Interpersor	nal Relationships – H	ow to accor	nmodat	e diffe	rent styles	- conse	quences	CO1		
of Interperson	al relationship					Deviede	<u> </u>				
UNIT-II	COMMUNICA	TION SKILLS				Periods:	6				
Introduction	– Meaning –	Process of comm	unication	– Tool	s for	communio	ation -	Verbal	CO 2		
communicatio	n –Non – Verb	al communication_1)c			~						
		on –Non – Verbal communication– Dealing with Conflict– Communication Barri									
UNIT-III	EMOTIONAL	INTELLIGENCE	aling with C	Conflict-	- Comr	Periods:	6				
UNIT-III Emotional inte	EMOTIONAL elligence, emo	INTELLIGENCE	to underst	Conflict- and, us	- Comr e man	Periods: age own e	6 motions,	positive			
UNIT-III Emotional inte ways to reliev	EMOTIONAL elligence, emo e stress, empa	INTELLIGENCE tional quotient, ability thy and resolving cont	to underst	Conflict- and, us	- Comr e man	Periods: age own e	6 motions,	positive	<u> </u>		
UNIT-III Emotional inte ways to reliev	EMOTIONAL elligence, emo e stress, empa	INTELLIGENCE tional quotient, ability thy and resolving cont	to underst	Conflict- and, us	- Comr e man	Periods: age own e	motions,	positive	CO 3		
UNIT-III Emotional inte ways to reliev UNIT-IV	EMOTIONAL elligence, emo e stress, empa PROBLEM \$	INTELLIGENCE tional quotient, ability thy and resolving cont SOLVING	to underst	Conflict-	- Comr e man	Periods: age own e Periods:	motions,	positive	C03		
UNIT-III Emotional inte ways to reliev UNIT-IV Introduction – Stages of prot	EMOTIONAL elligence, emo e stress, empa PROBLEM S · Need for prob blem solving –	INTELLIGENCE tional quotient, ability thy and resolving cont SOLVING blem Solving – Skills Methods of Problem so	to underst flict. for Probler olving.	and, us n Solvir	- Comr e man ng -Pr	Periods: age own e Periods: ocess of P	motions, 6 6 roblem s	positive solving –	CO3		
UNIT-III Emotional inte ways to reliev UNIT-IV Introduction – Stages of prot UNIT-V	EMOTIONAL elligence, emore e stress, empa PROBLEM S Need for pro- olem solving –I TEAM SPIRIT	INTELLIGENCE tional quotient, ability thy and resolving cont SOLVING blem Solving – Skills Methods of Problem so AND GROWTH	to underst flict. for Probler olving.	conflict- and, us n Solvir	- Comr e man ng -Pr	Periods: age own e Periods: ocess of P Periods:	6 roblem s	positive solving –	CO3		
UNIT-III Emotional interview ways to relieve UNIT-IV Introduction – Stages of prot UNIT-V Team spirit, achievement a	EMOTIONAL elligence, emore e stress, empa PROBLEM S Need for pro- blem solving – TEAM SPIRIT growth minds and time comp	INTELLIGENCE tional quotient, ability thy and resolving cont SOLVING blem Solving – Skills Methods of Problem so AND GROWTH set, high performing iance.	to underst flict. for Probler olving. teams, tru	and, us n Solvir ust and	- Comr e man ng -Pro	Periods: age own e Periods: ocess of P Periods: alignmer	6 motions, 6 roblem s 6 nt, focus	positive solving – s, target	CO3 CO4 CO5		
UNIT-III Emotional inter ways to relieve UNIT-IV Introduction – Stages of prot UNIT-V Team spirit, achievement a	EMOTIONAL elligence, emore e stress, empa PROBLEM S Need for prob blem solving – TEAM SPIRIT growth minds and time compl ods: 30	INTELLIGENCE tional quotient, ability thy and resolving cont SOLVING olem Solving – Skills Methods of Problem so AND GROWTH set, high performing iance.	to understa flict. for Probler olving. teams, tru Practi	and, us n Solvir ust and	- Comr e man ng -Pro d minc	Periods: age own e Periods: ocess of P Periods: alignmer	6 motions, 6 roblem s 6 nt, focus	positive solving – s, target	CO3 CO4 CO5		

S.S.h

1. Brooks, Margret. Skills for Success. Listening and Speaking. Level 4 Oxford University Press, Oxford: 2011.

2. Richards, C.Jack. & DavidBholke. SpeakNowLevel3. OxfordUniversityPress, Oxford: 2010

Reference Books

1. Bhatnagar, Nitin and Mamta Bhatnagar. Communicative English for Engineers and Professionals. Pearson:New Delhi,2010.

- 2. Hughes, Glyn and Josephine Moate. Practical English Classroom. Oxford University Press: Oxford, 2014.
- 3. Vargo, Mari. Speak Now Level 4. Oxford University Press: Oxford, 2013.

Web References

- 1. https://mrcet.com/downloads/MBA/Professional%20Communication%20Skills.pdf
- 2. https://www.drishtiias.com/pdf/emotional-intelligence.pdf

Evaluation Method

		Contir	nuous Asses	ssment Marks (CAM)	End Semester		
Assessment	CAT 1	CAT 2	CAT 3	Assignment*	Attendance	Examination (ESE) Marks	Total Marks	
Marks		70		20	10	-	100	

Department	Chemistry	Programme: M.Sc. Chemistry										
Semester	First	Course Cat	egory	Code: I	DSC *End Se	emester	Exam Ty	oe: PE				
Course Code	A23PCHL101	Periods/W	/eek		Credit	Ma	aximum	Marks				
Course Coue		L	Т	P	С	CAM	ESE	TM				
Course Name	ORGANIC CHEMISTRY LABORATORY - I	-	-	4	2	50	50	100				
Prerequisite	Basic Knowledge studied in the UG Le	vel			•		4					
	To know the basic knowledge of the separation of organic mixture											
_	To Develop the skill on the identification of functional group											
Course Objectives	To improve practical knowledge on the preparation of organic compounds											
, ,	To implement the Oxidation and	reduction in	the ch	emical r	eactions							
	To learn the method to introduc	e acyl group	in the	organic	compounds							
		BT Mapping(Highest Level)										
	CO1 Develop the knowledge on the separation of organic mixture K3											
_	CO2 Identify the functional groups in t		К3									
Course	CO3 prepare organic compounds		К3									
Outcome	CO4 Understand Oxidation and reduct	าร	К3									
	CO5 Add acyl group in the organic cor	К3										
List of Exper	iments											
1. Identification	of components in a two component mixtu	ure and prepa	aration	of their	derivatives.							
2. Preparations												
(i) p-N	litrobenzoic acid from p-Nitrotoluene (Oxi	dation)										
(ii) Ant	hroquinone from Anthracene (Oxidation)											
(iii) 1,2	,3,4 – Tetrahydrocarbazole from Cyclohe	xanone (Rec	duction))								

- (iv) Methyl orange from Sulphanilic acid
- (v) Acetyl Salicylic acid (Aspirin) from Salicylic acid (Acetylation)
- (vi) m-nitro aniline from m-dinitrobenzene(Reduction)

Lecture Periods: -	Tutorial Periods:-	Practical Periods:-30	Total Periods:30
Reference Books			

S. Furniss Brain - Vogel's Textbook of Practical Organic Chemistry – Pearson Publication, 5th Edition, Reprint 2004.
 N.S. Gnanapragasam &G.Ramamurthy - Organic Lab Manual (Semi-Micro Qualitative Analysis and Separation) - S.

Viswanatł	nan (Printers & Publishers), Pvt., Ltd, Reprint 2002.
Web Refe	erences
1. 2.	https://mis.alagappauniversity.ac.in/siteAdmin/dde- admin/uploads/2/PG_M.ScChemistry_344%2024_Practical%20Organic%20Chemistry_MSc%20Chemistry.pdf https://www.vedantu.com/chemistry/salicylic-acid

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

	Continuo	ous Asses	s (CAM)	End Semester	Total		
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks	
Marks	15	15	10	10	50	100	

S.S.N

Department	Chem	iistry	Program	ne: M.	Sc. Ch	emistr	у					
Semester	First		Course Ca	tegory	Code:	DSC *	End Se	emester	Exam Ty	pe: PE		
Course Code	A23P0	CHL102	Periods/V	Veek		Cı	redit	Ma	aximum	Marks		
Course Coue			L	Т	P	1	С	CAM	ESE	TM		
Course Name	INOR(LABO	GANIC CHEMISTRY RATORY - I	-	-	4		2	50	50	100		
Prerequisite	Basic	Knowledge studied in the UG Le	evel									
	To know the basic principles of semi micro qualitative analysis											
	To learn to indentify the common ions present in the mixture											
Course Objectives	To develop the practical knowledge on the preparation of inorganic complex											
,	To know the method of estimation of metal ion											
	•	To improve the knowledge on	the colorimetr	ic meth	od							
	On co	mpletion of the course, the stu	udents will be	e able t	0			ВТ Марр	ing(Highes	st Level)		
	CO1 Demonstrate group separation and analysis of inorganic mixtures K3											
Course	CO2	Identify rare and common ions		К3								
Outcome	CO 3	Prepare selected inorganic com		К3								
	CO4	Estimate the metal ions presen	t in the sample	e by col	orimetr	ic meth	od		К3			
	CO5	Identify the metal ion present in	the solution				К3					
List of Expe	riment	S										
 Semi micro cations to be 	qualitat e include	ive analysis of mixture containi ed. W, Te, Se, Ce, Th, Zr, Be, V	ing two comn , Mo, L.,)	non and	d two ra	are cat	ions. (The follo	wing are	the rare		
 Colorimetri Preparatior 	c Analys ns:	sis using photoelectric method: I	Estimation of I	ron, Nic	ckel, Co	pper a	nd Mai	nganese.				
i. Po	tassium	tris(oxalato)aluminate(III) trihyd	rate									
ii. Tri	s(thioure	ea)copper(I) chloride										
iii. So	dium he	xanitrocobaltate (III)										

- iv. Tetrammine copper(II) sulphate
- Sodium cuprousthiosulphate v.

Lecture Periods: -	Tutorial Periods:-	Practical Periods:-30	Total Periods:30	
Reference Books				

V.V.Ramanujam, Inorganic Semi Micro Qualitative Analysis, The National Publication, 3rd Edition, Reprint 2004.
 G. Svehila, Vogel's Qualitative Inorganic Analysis, Pearson Publication, 5th Edition, Reprint 2004.

Web References

1. https://iscnagpur.ac.in/study_material/dept_chemistry/4.1_MIS_and_NJS_Manual_for_Inorganic_semimicro_qualitative_analysis.pdf

S.S.h

2. https://archive.int.washington.edu/users/bertsch/articles/176.pdf

3. https://www.scribd.com/document/250411802/SKT1013-Experiment-4

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

Assessment	Continuc	ous Asses	End Semester	Total		
	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks
Marks	15	15	10	10	50	100

Department	Chem	Programme: M.Sc. Chemistry							
Semester	Seco	nd	Course Ca	tegory	Code:	DSC *End	Semester Exam Type: TE		
Course Code	A 72D	<u>ситол</u>	Periods/W	eek		Credit	Maximum Marks		
	AZJF	СП1204	L	Т	Р	С	CAM	ESE	TM
Course Name	INOR	GANIC CHEMISTRY II	4	-	-	4	25	75	100
Prerequisite	Basio	c Knowledge studied in the UG							
	•	Advanced theories of bonding	g in complex	xes alc	ong with	n their ster	eochemis	stry	
Course	•	Mechanisms of inorganic rede	ox reactions	s involv	ving co	ordination	compoun	ds	
Objectives	•	Electronic spectroscopy and	magnetic pr	opertie	es of co	ordinatior	compou	nds.	
	On completion of the course, the students will be able to								st Level)
Course	CO1	Know the different kinds of elements	compound	ds of	the m	ain group		K3	
Outcome	CO2	Understand the structure and rings, and cages.	bonding in	inorga	inic cha	ains,		K3	
	CO3 Identify ligands of main group elements and complexing K3 agents for main group metals.								
	CO4	Analyse the synthetic techniq	ues in inorg	ganic c	chemist	try.		K3	
	CO5	Know about organo metallic co	mpounds-					K3	
UNIT-I	NATU	RE OF BONDING IN MAIN GI	ROUP ELE	MENT	S			Period	ls: 12

Structures of Main group compounds, Geometric Distortions, Jahn Teller Distortions, MOT to explain shapes of AH_n compounds and A_2H_n compounds. Hyperconjugation, Multiple Bonding, Multicentre bonding, Electron deficient, electron precise, and electron rich compounds of main group elements. Catenation, polyacetylene, Pierls Distortion, Zintl clusters, Wade's Rule, structure of polyhedral boranes, 2-D aromaticity, 3-D aromaticity.

UNIT-II INORGANIC CHAINS, RINGS, AND CAGES Periods: 12

Chemistry of simple boranes, silanes, phosphanesand sulphanes–Boranes: synthesis of neutral boron hydrides, polyhedral borane anions and dianions.Carboranes: synthesis and polyhedral geometries, metalloboranes, and metallocarboranes - Boron – nitrogen compounds: azaboranes, borazines. Silicates: classification - orthosilicates, noncyclic silicate anions, cyclic silicate anions, infinite chain anions, infinite sheet anions, Structure of cyclic siloxanes and cyclopolysilanes.

UNIT-III COORDINATION CHEMISTRY - I

Periods: 12

Periods: 12

Stereochemical aspects, Stereoisomerism in inorganic complexes: Isomerism arising out of ligand distribution and ligand conformation; chirality and nomenclature of chiral complexes; optical rotatory dispersion and circular dichroism. Macrocyclic ligands; types; porphyrins; corrins, Schiff bases; crown ethers and cryptates.

UNIT-IV HALOGEN AND NOBLE GAS CHEMISTRY

Halogen oxides and oxocompounds: dichlorinemonooxide, chlorine dioxide, dibrominemonooxide, and iodine pentaoxide-preparation and properties; halogen oxyfluoridesand ionic oxyhalogenspecies. Xenon oxides and fluorides: xenon trioxide, xenon difluoride, xenon tetrafluoride. Halogen compounds of nitrogen: nitrogen trifluoride, tetrafluorohydrazine, dinitrogen difluoride, haloamines, oxohalides, andnitrogen trifluorideoxide. Sulfurfluorides: Synthesis and reactivity of disulfur difluoride, sulfurtetrafluoride.

S.A.h

UNIT-V ORGANO METALLIC COMPOUNDS	Periods:	12
Organometallic compounds: synthesis, bonding and structure, and reactivity. The organometallic chemistry in catalysis, Co-ordinative unsaturation, oxidative addition, reactions of specific molecules- Hydrogen addition- HX addition- Addition of X2, Addition re Si-H Bonds, addition of C-C, C-Si and Si-Si bonds- Elimination reactions – α and β eliminati	role of addition actions of on.	CO5
Lecture Periods: 45 Tutorial Periods:-15 Practical Periods:- Total Period	ods:60	
Text Books		
 T. A. Cotton, G. Witkinson, C. A. Mullio and W. Bochmann, Advanced inorganic Chemistry Interscience: New York, 1988. J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry; 4th ed.; Harper and Row: N 3. K. F. Purcell, and J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976. Reference Books D. F. Shriver, P. W. Atkins, and C. H. Langford, Inorganic Chemistry; 3rd ed.; Oxford L London, 2001. T. Moeller, Inorganic Chemistry, A Modern Introduction; John Wiley: New York, 1982. W. L. Jolly, Modern Inorganic Chemistry, 2nd Edn, McGraw-Hill International Edition, 1991. G. S. Girolami, T. B. Rauchfuss, and R. J. Angelici, Synthesis and Technique in Inorganic Ch University Science Books, Sausalito, 1999. W. L. Jolly, The Synthesis and Characterization of Inorganic Compounds, Prentice Hall, New Web References 	y, our ed., ew York,19 Jniversity I nemistry, 3 Jercy,197	983. Press: r ^d ed.,
1. https://bit.ly/3OtepkR 2. https://bit.ly/3QyVg2R		
3. https://bit.ly/3zSu8pu		

COs/POs/PSOs Mapping

COs		Progra	m Outcome		Program Specific Outcomes (PSO			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	2	3	3	2
2	2	2	2	2	3	1	3	3
3	3	2	3	3	2	3	2	1
4	3	2	2	3	2	2	3	2
5	3	3	3	3	3	2	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

Accessment		Cont	inuous Ass	End Semester	Total		
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	(ESE) Marks	Marks
Marks	1	.0	5	5	5	75	100

X2

S.S.N

Department	Chemistry	Programme: M.Sc. Chemistry										
Semester	Second	Course Ca	tegory	Code:	DSC *End S	Semeste	r Exam T	ype: TE				
Course Code	A23PCHT205	Periods/W	eek		Credit	Ma	iximum N	1arks				
		L	Т	P	С	CAM	ESE	TM				
Course Name	ORGANIC CHEMISTRY II	4	-	-	4	25	75	100				
Prerequisite	Basic Knowledge studied in the UG	Basic Knowledge studied in the UG Level										
	 Mechanisms and evidences for reactions, elimination reactions and reactions. 	or aromatic and rearrang	electro ements	ophilic S	and nuleopl	nilic subs	stitutions,	addition				
Course	Effect of substrate structure, lease	ving group a	nd attac	cking sp	pecies in the	above rea	actions.					
Objectives	Understand the concept of aromaticity											
	Synthesis and applications of selected reagents used for various organic transformations.											
	On completion of the course, the stuc	lents will be	able to	0		ЗТ Маррі	ng(Highes	st Level)				
Course	CO1 Recall the basic principles of Elec	ctrophilic Sub	stitutio	n.			K3					
Outcome	CO2 Recall the basic principles of Nuc	cleophilic Sub	stitutio	n			K3					
	CO3 Understand the mechanism of fre	ee radical rea	ction				K3					
	CO4 Describe the concept of aromatic	city.					K3					
	CO5 Utilize the selected reagents use	d for various	organio	c transfo	ormations.		K3					
UNIT-I	AROMATIC AND ALIPHATIC ELEC	TROPHILI	C SUB	STITU	TION		Perio	ds: 12				
Aromatic electro reactivity in the Reactions invol Halogen electro reactions. Mech and cyclic mech	philic substitution: Mechanism, orientatic substrates and reactivity of the electroph ving- Nitrogen electrophiles: nitrationanc ophiles: chlorination and bromination -C nanisms: S_E^2 and S_E^1 , Substitution by c	on and iles - Selecti d diazonium arbon electro double bond	rea vity rela couplin ophiles shifts -	activity-(ationshi ng. Sulp : Friede other	Quantitative ip Hammett a bhur electrop el-Crafts alky mechanism:	treati and Taft e hiles: sul /lation an addition-	ment equations. phonation id acylatic eliminatic	of on on				

UNIT-II ELIMINATION AND FREE RADICAL REACTIONS

Periods: 12

Periods: 12

Mechanisms: E2, E1, E1cB and E2C syn eliminate ions. Orientation of the double bond: Hoffmann and Saytzeff rules and applications. Reactivity: Effect of substrate, attacking bases, leaving group and medium. Mechanisms and orientation in pyrolytic eliminations. Long - lived and short-lived radicals - Production of radicals - thermal and **CO2** photochemical reactions, methods of detection, stability. Reactions - polymerization, addition, halogenations, aromatic substitutions and rearrangements.

UNIT-III ADDITION TO CARBON-CARBON MULTIPLE BONDS Periods: 12

Addition reactions – Mechanisms - electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms. Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and nitrogen. Addition to carbon-hetero atom multiple bonds - Mannich reaction, acids, esters, nitrites, addition of Grignard reagents, Wittig and Prins reactions. Stereochemical aspects of addition reactions - Addition to carbonhetero atom multiple bonds: Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl and unsaturated carbonyl compounds.

UNIT-IV AROMATICITY

Aromaticity of benzenoid – non-benzenoid and heterocyclic compounds-Huckel's rule- aromatic, non- aromatic and anti- aromatic systems .- System of two (cyclopropenyl cation, cyclobutadienyl cation etc,), four(cyclopropenyl anion, cyclobutadiene, cyclopentadienyl cation etc,), six (benzene, pyridine, pyrrole, thiophene, furan etc,) eight (cyclooctatetraene etc,) and ten electrons (annulene [10] etc,). System with more than 10 pi electrons (4n+2 & 4n system)- Annulene up to C-18. Aromaticity Azulene- homoaromatic compounds.

S.S.T

UNIT-V ORGANIC TRANSFORMATION AND REAGENTS Periods: 12 Preparation and synthetic applications of Lithium aluminum hydride, sodium Borohydride, Tri-n-butyl tin hydride,9-BBN,NBS,Trimethylsillyl iodide, n-Butyl Lithium, Grignard reagent, Gilmann reagent, LDA, DCC, PCC, DDQ, 1,3-Dithiane, SeO2.OsO4, KMnO4, Phase transfer catalyst, Crown ethers and Merrifield resins, Chemoselective CO5 reaction-regioselective reaction - strereoselective reactions. Lecture Periods: 60 **Tutorial Periods:-Practical Periods:-Total Periods:60** Text Books 1. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee Organic Chemistry, 7th edition, Pearson Education, 2010. 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959. 3. P. S. Kalsi, Organic Reactions and their mechanism, 5th edition, New Age International Publishers, 2021. 4. V.K.Ahluwalia, R.K Parashar, Organic reaction mechanisms, Ane Books India Publications, 3rd edition, 2009. Reference Books 1. P. Y. Bruice, Organic Chemistry, 7th edition, Prentice Hall, 2013. 2. S. M. Mukherji and S. P. Singh, Reaction Mechanism in Organic Chemistry, 3rd edition, Macmillan India Ltd.1984. 3. Jonathan Clayden, Nick Greeves and Stuart Warren, Organic Chemistry, Oxford University Press, 2nd edition, 2016.4. 4. Francis A.Carey and Richard J.Sunberg, Advanced Organic Chemistry, Springer Science & Business Media. 3rd Edition.2013. 5. J. March and M. Smith, Advanced Organic Chemistry, 5th edition, John-Wiley and Sons.2001. Web References 1. https://bit.ly/3HMIFWX 2. https://www.organic-chemistry.org/ **3.** https://www.studyorgo.com/summary.php **COs/POs/PSOs Mapping Program Outcomes (POs) Program Specific Outcomes (PSOs)** COs PSO1 PSO2 PSO3 **PO1** PO2 PO3 PO4 **PO5** 1 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 2 3 3 3 3 2 4 3 2 1 2 2 3 2 3 5 3 3 3 3 3 3 3 Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

		Cont	tinuous Ass	End Semester	Total		
Assessment	sessment CAT CAT Model Assignment* Attendar						Marks
Marks	1	0	5	5	5	75	100

D.A.h

Department	Chemistry	Programme: M.Sc. Chemistry							
Semester	Second	Course Ca	ategory Code: D	SC *End	Semester I	Exam Type	ə: TE		
Course Code	423PCHT206	Periods/W	eek	Credit	Ma	ximum Ma	ırks		
		L	T P	C	CAM	ESE	TM		
Course Name	PHYSICAL CHEMISTRY II	4		4	25	75	100		
Prerequisite	Basic Knowledge studied in the UG Le	vel							
	To understand the behaviour of	electrolyte	solutions						
Course	• To know about the partial molar	r thermodyn	amics propertie	s and fugac	itv				
Objectives	To categorize the molecules based and the second seco	sed on the s	symmetry and c	iroun	ity				
	To solve Schrodinger equation f	for multi ele	ctron systems a	and know ab	out approx	imation m	ethods		
	To study about molecular spe	ectroscopy	,		out approv		ounede		
	On completion of the course, the stur	dents will h	a able to		BT Manni	na(Hiahes	t I ovol)		
	on completion of the course, the stat								
0	CO1 Understand the behaviour of elec	CO1 Understand the behaviour of electrolyte solutions K3							
Outcome	CO2 Know about the partial molar the	rmodynami	cs properties ar	nd fugacity		K3			
outcomo	CO3 Categorize the molecules based	on the sym	metry and grou	р.		K3			
	CO4 Solve Schrodinger equation for r	multi electro	n systems and	know about		K3			
	CO5 Study about molecular spectre	oscopy				K3			
UNIT-I	ELECTROCHEMISTRY - I	LECTROCHEMISTRY - I Periods: 12							
Partial molar p chemical poter significance an method –varia determination o	properties – partial molar free energy of ntial with temperature and pressure. Partial determination of these quantities. Definition of fugacity with temperature and p of activity and activity coefficient by emfinitiation of the section of the section of the section of the section of activity and activity coefficient by emfinitiation of the section of the section of activity and activity coefficient by emfinitiation of the section of the	(Chemical I rtial molar finition of fu pressure- T method – d	Potential), Gibb volume and P ugacity - Deten he concept of etermination of	os-Duhem E artial molar mination of activity and activity and	Equation- heat cont fugacity b activity c activity co	Variation of ent – The by graphicator oefficient for	of ir al CO2 – or		
non- electrolyte UNIT-III	es. GROUP THEORY - I				F	Periods: 1	2		
Symmetry elen group-sub (C1,C2,C3,C4, product represe	nents and symmetry operations- group group-similarity transformation a C2V,C3V,C∞V,C2h,D2h,D3h,D4h,D6h,To entation.	s-Abelian a and con d, Oh). Rec	nd non- abelia jugate eler ducible and Irre	n groups- c nents- (educible rep	yclic group class-point presentation	os- order o group ns – Direo	of is ct CO3		
UNIT-IV	QUANTUM MECHANICS				F	Periods: 1	2		
Solution of So Nondegenerate perturbation the Huckel Molece Calculation of e	chrodinger equation for multi electron e perturbation theory- first order correctio eory to Helium atom. Variation method-Ap ular orbital theory of conjugated sys electron density, bond order and delocaliz	systems on to the en- pplication of stems-ethyle zation energ	(Approximation ergy and wave variation mether ene, butadiene y.	methods)- function. Ap od to Helium , cyclobuta	perturbat oplication c a atom. diene and	ion theory of first orde	/- >r CO4		
UNIT-V	MOLECULAR SPECTROSCOPY - I				F	Periods: 1	2		
Electromagneti diatomic molect vibrational spe fundamental v	c radiation- types of molecular spectra. cules (Rigid rotator)- Types of poly at ctra of diatomic molecules (SHO)-Anhar ibration of linear and non- linear mole	Rotational s tomic molec rmonic oscil ecules- over	spectroscopy- s cules. Vibratior lator. Rotation- tones-fermi res	selection rul nal spectros Vibration c sonance.	e-rotationa scopy- selo f diatomic Raman sp	l spectra o ection rule molecules ectroscopy	of ∋- §- CO5		

X2

S.S.h

selection rule-Rayleigh and Raman Scattering-Rotational Raman spectrum of a diatomic Molecule-Rotational –
Vibrational Raman spectrum. Mutual Exclusion principle. Electronic spectroscopy- Absorption and intensity shifts-
selection rule.Frank- Condon principle for the electronic transition for a diatomic molecule.Mutual Exclusion principleLecture Periods: 60Tutorial Periods:-Practical Periods:-Total Periods:60

Text Books

- 1. B.R.Puri, L.R Sharma Madan S Pathania, Principles of Physical Chemistry, 2022, Vishal Publishing co, 48th edition.
- 2. Gupta M. C., 1993, Statistical Thermodynamics, Wiley Eastern limited, New Delhi.
- 3. Lee, Sears, Tercotte, 1973, Statistical Thermodynamics, Addision Wesley Publishing Co., London 1st Edition.
- 4. R.K.Prasad, Quantum Chemistry, New age international publishers, 4th revised edition , 2020.
- 5. P.K.Bhattacharya, Group Theory and its applications, Himalaya Publeshers. 3rd edition. 2014.

Reference Books

- 1. Antropov L., 1999, Theoretical electrochemistry, MIR Publications, New Delhi.
- 2. Glasstone S., 2002, An Introduction to Electrochemistry, Von Nostrand Co. Inc., Toronto.
- 3. Kuriakose J. C., Rajaram, J. 1999, Thermodynamics, III edition, Shobanlal Nagin Chand, New Delhi, India.
- H.W. Hanna, 1993, Quantum Mechanics in Chemistry-Benjamin –CummizaLondon Publishing Company, New Delhi, India.

5. Chandra A. K., 1988, Introductory Quantum Chemistry, 3rd edition, Tata McGraw-Hill Publishing Co, New Delhi, India Web References

- 1. https://nptel.ac.in/courses/104/103/104103112/
- 2. https://bit.ly/3tL3GdN
- 3. https://www.whfreeman.com/pchem8

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

Assessment		Cont	tinuous Ass	CAM)	End Semester	Total	
	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	.0	5	5	5	75	100

S. Aib

Department	Chemistry	Programn	ne: M.S	c. Chen	nistry			
Semester	Second	Course C	ategory	Code:	DSE *End	Semeste	r Exam T	ype: TE
Course Code	A23PCHE204	Periods/W	/eek		Credit	Ma	aximum M	larks
Course Nome			l	Р	<u> </u>	CAM	ESE 75	1 M
	CHEMINFORMATICS	4	-	-	4	23	75	100
Prerequisite	Basic Knowledge studied in the UC	J Level						
_	To apply a range of computa	ational tools	to add	ress tox	icological	question	S	
Course	To give students skills in the	retrieval, p	rocessi	ng, diss	eminatior	, and use	e of inform	ation
Objectives	systems for chemical/biologi	cal informa	tion and	d structu	ires			
	• To prepare for a career in in-	-silico toxici	ty predi	iction in	the pharr	na, indust	tryetc.	
	On completion of the course, the stu	dents will b	e able t	0		BT Mappi	ina(Hiahes	t Level)
			·	• •	- 1		<u> </u>	,
_	CO1 Learn about the Information of c	of Moleculer	ics and Ch	its applic	ations		K3	
Course	CO3 Identify about the Searching Ch	emical Struct					K3	
Outcome	CO4 Understand about the Computer	r Assisted Vi	rtual scr	eenina d	esian.		K3	
	CO5 Learn about the Application of C	heminforma	tics in D	rug Desi	gn		K3	
UNIT-I	INTRODUCTION TO CHEMINFOR	MATICS				P	eriods: 1	2
Introduction to	cheminformatics, History and Ev	olution of	chemin	formatio	cs, Use	of chemi	nformatics	S,
Prospects of c	heminformatics, Molecular Modeling	l .						
								CO1
UNIT-II	REPRESENTATION OF MOLECUL	LES AND C	HEMIC	AL RE	ACTIONS	P	eriods: 1	2
Nomenclature	; Different types of Notations; SMILE	ES coding; I	Matrix F	Represe	ntations;	Structure	of Molfile	S
and Sdfiles; Li	braries and toolkits; Different electro	nic effects;	Reactio	on class	ification			
								CO2
UNIT-III	SEARCHING CHEMICAL STRUCT	URE				P	eriods: 1	2
Full structure	search; sub structure search; bas	ic ideas; s	imilarity	search	n; Three	dimensio	nal searc	h
methods; Bas	sics of Computation of Physical a	and Chemi	cal Da	ta and	structure	e descrip	tors; Dat	a
visualization.								CO3
UNIT-IV	COMPUTER ASSISTED VIRTUAL	SCREENIN	IG DES	SIGN		P	eriods: 1	2
Structure Base	ed Virtual Screening- Protein Ligand	Docking, S	coring	Functior	ns for Pro	tein Ligar	nd docking] ,
Practical aspe	cts of structure based Virtual Screen	ning; Predic	tion of	ADMET	Propertie	es, 2 D ar	nd 3D dat	a
searching, Cho	emical databases, Role of computers	s in Chemic	al Rese	earch.				C04
								_
UNIT-V		ATICS IN D	RUG D	ESIGN		P	eriods: 1	2
Quantitative S	tructure-Property Relations; Descrip	tor Analysis	s; Comp	outer As	sisted St	ructure el	ucidation	S;
Target Identifi	cation and Validation; Lead Finding	g and Opti	mizatio	n; Anal	ysis of H	TS data;	Design o	of
Combinatorial	Libraries; Ligand Based and Structu	ire Based D	rug des	sign.				005
			. –					
Lecture Perio	as: 60 Tutorial Periods:-	Practi	cal Per	'iods:-		lotal Per	10ds:60	

×2

\$. \$.h

Text Books
 Andrew R. Leach, Valerie J. Gillet, Cluwer, Introduction to Cheminformatics, Academic Publisher, Netherlands, 2003. Johann Gasteiger& Thomas Engel, A Textbook of Chemoinformatics, Wiley Publisher, 2003. Johann Casteiger& Thomas Engel, Resis Concepts and Methods, Wiley Publisher, 2018.
S. Johann Gasleigera montas Engel, Basic Concepts and Methods, Wiley Publisher, 2016.
 Lisa B. English (Editor), Combinatorial Library Methods and Protocols, Humana Press Inc, Volume:201, 2002.
2. Frank Jensen, Introduction to Computational Chemistry, Wiley Publisher, Second Edition, 2006.
3. FideleNtie – Kang, Chemoinformatics of Natural Products, De Gruyter Publisher, 2022.
Jagjeet Singh, Cheminformatics, Random House Publisher, 2020.
5. JurgenBaiorath, Chemoinformatics for Drug Discovery, Wiley Publisher, 2013.
Web References

- 1. https://chem.libretexts.org
- 2. https://en.wikibooks.org/wiki/Chemical_Information_Sources
- 3. https://guides.loc.gov/chemistry-resources

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	3	3	3	3	3	3	3
2	3	2	3	2	1	3	2	2
3	2	2	2	3	2	1	3	3
4	2	3	2	2	2	2	3	2
5	3	2	3	3	3	2	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

		Cont	tinuous Ass	End Semester	Total			
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks	
Marks	1	.0	5	5	5	75	100	

\$. \$. h

Department	Chemistry	Programm	e: M.Sc	. Chemi	istry					
Semester	Second Course Category Code: DSE *End Semester							: TE		
Course Code	A23PCHE205	Periods/Week			Credit	Maximum Mar		ks		
Course Name		L 4	-	P -	C A	CAM 25	ESE 75	1M 100		
Droroquisito	Basic Knowledge studied in the LIG Le					25		100		
Fielequisite	Basic Knowledge studied in the OO Le									
Course Objectives	 To create awareness about the importance of chirality for organic synthesis and fo biological activity Apply the important principles of stereochemistry and understand them. 									
Course Outcome	On completion of the course, the stud	ng(Highest	Level)							
	CO1 Understand the basic concept of		K3							
	CO2 Able to synthesize on chiral sub-	K3								
	CO3 Use chiral substrate to synthesize	K3								
	CO4 Utilysze chiral auxiliary to synthe	K3								
	CO5 handle chiral catalyst to synthesi	K3								
UNIT-I	INTRODUCTION TO ASYMMETRIC	C SYNTHE	SIS				Periods	5 : 12		
UNIT-II Nucleophilic a modifications. I and hydroborat	ASYMMETRIC SYNTHESIS ON CH ddition to α -chiral carbonyl compounds Double stereo differentiation; matched pa tion reactions. Electrophilic addition to α -	IIRAL SUE s; Predictio air and misr - chiral olefir	STRA n of st natched	TE ereoche I pair; e xidation	emistry Cra xamples frc	m's rule a om aldol co anation, hy	Periods and related indensation droboration	: 12 CO2		
 oxidation, alk 	ylation of enolates of β -chiral carbonyl co	mpounds.								
UNIT-III	ASYMMETRIC SYNTHESIS USING	CHIRAL F	REAGE	NTS			Periods	: 12		
Chiral organo reactions, T.S prochiral keton Asymetric Mic enantioselectiv	boranes -Application of chiral organ b models; Chiral modification of lithium es; oxazaborolidines. T.S model; hael addition to α , β – unsaturated of e deprotonation.	ooranes, reo aluminum carbonyl co	duction hydride, mpound	(Ipc ₂ BC BINAL ds T.S	CI) and ally -H - applic model; ch	rlation and cation in re iral lithium	crotylation eduction of amides -	CO3		
UNIT-IV	ASYMMETRIC SYNTHESIS USING	G CHIRAL	AUXIL	.IARY			Periods	;: 12		
Chiral auxiliarie and other pyrro 8-phenyl menth	es derived from proline, champhor, menth olidines, oxithiane, oxazolidine-2- one, th nol.	nol and othe niazolidine-2	r chiral 2-one, p	pool sou henylet	urces. SAM hylamine, 2	P / RAMP 2- phenylcy	hydrazines clohexanol	, CO4		
UNIT-V	ASYMMETRIC SYNTHESIS USING	CHIRAL (CATAL	YSTS			Periods	: 12		
Asymmetric all reactions: DAI advances DIPA further expans alkenes; Utility	kylation and allylation of carbonyl comp B, Keck's allylation, TADDOLs and o AMP, DIOP and Noyori's BINAP - selected ion in the field of organo catalysis. Sha metal-semicorrinato complexes and Jaco	pounds, chi other privileg d reactions arpless epo obson cataly	rality ai ged liga &examp xidation sts – Ev	mplificat ands. A bles. Pro , dihydi vans cat	tion, non-lir symmetric bline mediat roxylation, a alyst - Aziri	near effects hydrogena ed aldol re aminohydro dination.	s: Selected ation: early actions and oxylation of	CO5		

S.S.T

M.Sc Chemistry
Le	cture Periods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60							
Те	xt Books										
1. 2. 3. Re	Asymmetric Synthesis: Morrison, J. D. Vol 1- 5, Academic press,1983. Stereochemistry of Carbon compounds: E. L. Eliel, Wiley, 1992. Comprehensive Asymmetric Catalysis (Jacobsen, E. N,Pfaltz, A. Yamamoto, H. Eds.) Springer 2000. eference Books										
1. 2. 3. 4. 5.	Asymmetric Catalysis Catalytic Asymmetric S Methods for the Asym 2001. Principles of Asymmetric E. Gawley, J Aube, Per Asymmetric Synthesis, G	n Organic synthesis: Noy Synthesis: Ojima, I.VCH-I Imetric Synthesis of Cor Synthesis (Tetrahedron se gman, 1996 Aymmetric Sy B. Proctor, Oxford University	vori, R. Wiley-NY 1994. NY, Pergamon, 1998. mplex Organic Molecules, ries in Organic Chemistry), R. vnthesis, H. B. Kagan, Thiem v Press, USA, 1997.	Daniel J. O'Leary, Lecture Notes ie Medical Publishers, I st Edn., 2003.							
We	eb References										
1. 2. 3.	https://chem.libretexts.org https://en.wikibooks.org/wiki/Assymetric _Synthesis Sources https://guides.loc.gov/chemistry-resources										
	COs/POs/PSOs Mapping										

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	2	2	2	2	2	2	3	3
3	3	3	3	3	2	3	2	2
4	2	3	2	1	3	2	3	2
5	2	2	3	3	3	3	2	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	End Semester	Total		
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	.0	5	5	5	75	100

\$.2.1

Department	Chemistry Programme: M.Sc. Chemistry											
Semester	Second	Course Ca	tegory (Code: D	SE *End	Semester	Exam Typ	e: TE				
Course Code	A23PCHE206	Periods/W	eek		Credit	Ma	aximum M	arks				
	rse Code A23PCHE206 Periods/Week Credit Maximum Marks L T P C CAM ESE							TM				
Course Name	GREEN CHEMISTRY	4	-	-	4	25	75	100				
Prerequisite	Basic Knowledge studied in the UG L	.evel										
_	To Understand about Green C	hemistry										
Course	To learn about Ultrasound and	l Microwave ι	isage in	the Gre	en Chemis	try						
Objectives	To know about Green Catalyst	t										
	To learn about phase transfer	mechanism i	n the Gr	een Che	emistry							
	To use green chemistry conce	pt in the vario	ous orga	nic reac	tions							
	On completion of the course, the stu	udents will b	e able t	0		BT Mapp	ing(Highe	st Level)				
	CO1 Learn about Green Chemistry						K3					
Course Outcome	CO2 Understand usage of Ultrasoun Chemistry	d and Microw	vave in t	he Gree	'n		K3					
CO3Learn about usage various catalyst in the green chemistryK3												
CO4 Learn about phase transfer mechanism in the Green Chemistry K3												
	CO5 Apply green chemistry concept	in the various	s organi	c reactio	ons		K3					
UNIT-I	BASIC PRINCIPLES OF GREEN (CHEMISTRY	1			F	Periods: '	12				
Ultrasound: Int addition, alkyla medium- spec alkylation of ac solvents. Solve	troduction, instrumentation, the phenom tion, oxidation, reduction and coupling re ific effects, atom efficiency (% atom ctive methylene compounds and Diels -	nenon of cav eactions. Mic utilization), -Alder reaction	itation. S rowaves advanta ons. Rea	Sonoche s: introdu iges an actions i	emical este uction- con d limitatior n water an	rification, cept- reac s. Alkylat d reaction	substitutio tion vesse ion and s in orgar	in, il / N- CO2 iic				
UNIT-III	GREEN REAGENT AND GREEN (S			F	Periods [,] '	12				
			-	-		•						
Green Reagen Anhydride, Po oxidation catal polymer suppo	 t - Polymer supported reagents – polyn lystyrene wittig Reagent, Sulfonazide ysts - polymer supported catalysts- poly rted photosensitizers 	neric thioanis polymer. Gr ystyrene-alun	solyl Res een Ca ninum c	sin, poly talyst - hloride -	meric Carb Acid cata - polymeric	odiimide, lysts- bas super ac	Polystyrei e catalyst id catalyst	ne ts- ts- CO3				
UNIT-IV	PHASE TRANSFER CATALYST II	N GREEN S	YNTHE	ESIS		F	Periods: '	12				
Introduction- m	nechanism of phase transfer catalyst re	eaction- type	es and a	advanta	ges of pha	se transfe	er catalyst	_				
applications of alkyl halides, g Darzen reactio	phase transfer catalyst in organic synt generation of dichlorocarbenes, eliminat n, Wittig reaction – Oxidation using hydr	thesis- nitrile ion reaction, ogen peroxid	s from a alkylatio e under	alkyl or on react PTC co	acyl halide ion –Williar ndition.	s, alkyl flu nson Ethe	uorides fro er synthes	'm is, CO4				
UNIT-V	T-V ORGANIC SYNTHESIS IN GREEN CHEMISTRY Periods: 12											
Aqueous phase of nitriles- Kno without using	e reactions- oxidation of aldehydes and l bevenagel reaction. Michael reaction.Or any solvent- aldol condensation-Refor	ketones- oxic ganic synthe matsky reac	lation of sis in s tion, wit	amines olid stat tting rea	into nitro c e-Solid pha action - so	ompounds ase organ lid suppoi	s – oxidatio ic synthes rted orgar	on sis nic CO5				

synthesis-pyrrole, furons - Synthesis of paracetamol.

Sib. Å

Lecture	e Periods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60							
Text Bo	ooks	<u>.</u>									
1.	Organic Synthesis: Sp Edition, 2003	ecial Techniques, V.K.Ahlı	uwalia and R. Aggarwal, I	Narosa Publications, New Delhi, 4 th							
2.	 R.Sanghi, M.M Srivastava, Green Chemistry Environment Friendly alternatives, Narosa Publications New Delhi 2003. 										
3.	3. Green Chemistry – An Introduction text, Royal Society of Chemistry, UK 2002.										
Referei	nce Books										
1.	P.T.Anastas and JJ.C V	Varner, Green Chemistry th	eory and Prctices, Oxford L	Iniversity press, Oxford 1988.							
2.	E.V. Dehmlov, S.S Deh	mlov, Phase Transfer Catal	lysis, 2 nd edition Verlagcher	nie, Wienhein, 1983.							
Web Re	eferences										
1.	https://www.hansrajcolle	ege.ac.in/hCPanel/uploads/	elearning/elearning_docum	ent/Twelve_principle_of_GC.pdf							
2.	https://fccollege.ac.in/Ad W)-2022.pdf	dmin/Files/StudyMaterials/N	/ICROWAVE%20&%20US	%20GREEN%20SYNTHESIS(REVIE							
3.	https://fccollege.ac.in/Ad W)-2022.pdf.	dmin/Files/StudyMaterials/N	/ICROWAVE%20&%20US	%20GREEN%20SYNTHESIS(REVIE							
	W)-2022.pdf.										

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	End Semester	Total		
Assessment	CAT 1	CAT 2	Model Exam Assignment*		Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

S.S.h

Department	Chemistry	Programm	e: M.Sc	. Chemis	stry						
Semester	Second Course Category Code: DSC *End Semester Exam Typ										
Course Code	A23PCHL203	Periods/W	Periods/Week Credit					arks			
A	urse Code A23PCHL203 Periods/Week Credit L T P C										
Course Name	PHYSICAL CHEMISTRY LAB -I	4	2	50	50	100					
Prerequisite	Basic Knowledge studied in the UC	G Level									
	To learn about critical soluti	on system and o	distributi	on coeff	icient						
	To understand rate constan	t of the reaction	and Co	mpariso	n of acid str	engths					
Course Obiectives	To Analyse the activation and the activation a	nd frequency fac	tor								
	To learn about Molecular weight of the compound										
	To analyze phase diagram	of compound									
	On completion of the course, the	students will b	e able t	0		E	3T Mapping Leve	(Highest I)			
Course	CO1 Learn about critical solution	system and dist	ribution	coefficie	ent		K3				
Outcome	CO2 Understand rate constant of	the reaction an	d Comp	arison o	f acid streng	gths	K3				
CO3Analyse the activation and frequency factorK3											
	К3										
	CO5 Analyze phase diagram of c	ompound					K3				
 Determ Kl₃(Der Determ Compa Determ Determ Associa Determ Associa Determ Phase Phase Adsorp 	nination of distribution coefficient and monstration only) nination of the rate constant for Persu arison of acid strengths by Kinetics. nination of the energy of activation an ation factor of benzoic acid between the nination of molecular weight by Rast r diagram – simple eutectic system diagram – three component system of oxalic acid on charcoal.	determination o lphate oxidation d frequency fact penzene and wa nacro method	both by or. ter	rium Co	ry and Color	imetry.	ation of				
11. Determ	nination of molecular weight by Transi	ition Temperatu	e Metho	bc							
Lecture Period	ds: - Tutorial Periods:-	Practio	cal Peri	ods:-30	Т	otal Pe	eriods:30				
Reference Boo	oks	i			L						
1. Venkateswa	ran, V., Veeraswamv. R. &Kulandaive	elu, A. R. (1997)	. Basic	Principle	s of Practic	al Cher	nistrv. (2nd	Ed.).			
Sultan Chand &	& Sons.	,				51		- /-			
2. Daniels, Mat	hews, F., Howard, J. & John Warren,	W. (1970). Exp	erimenta	al Physic	cal Chemistr	ry, (7th	Ed.). Mc Gr	aw Hill.			

3. Findlay, A., (1959). Practical Physical Chemistry, (7th Ed.).

2

\$. \$.h

Web References

- 1. https://egyankosh.ac.in/bitstream/123456789/15870/1/Unit-12.pdf
- 2. https://www.chem.uci.edu/~lawm/11-2.pdf
- 3. https://www2.tulane.edu/~sanelson/eens212/ternaryphdiag.htm

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	2	3	3	3
2	3	2	3	2	3	2	2	2
3	3	2	2	3	2	3	3	3
4	2	2	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

	Continuc	ous Asses	s (CAM)	End Semester	Total	
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks
Marks	15	15	10	10	50	100

Department	Chemi	stry	Programme	: M.Sc.	Chemis	stry				
Semester	Secon	d	Course Cate	egory C	ode: DS	SC *End S	Semester E	Exam Typ	e: PE	
Course Code	A23D(204	Periods/We	ek		Credit	Ma	ximum M	arks	
		JIIL204	L	Т	Р	С	CAM	ESE	TM	
Course Name	INORC	GANIC CHEMISTRY LAB – II	-	-	4	2	50	50	100	
Prerequisite	Basic	Knowledge studied in the UG Lev	rel							
Course	•	To Learn practical knowledge on	the binary m	ixture a	analysis					
Objectives	•	To understand and develop the p	practical expe	rience	on the c	complex pre	eparation			
	On cor	npletion of the course, the stud	ents will be a	able to			BT	Mapping Level	(Highest)	
Course	CO1	Gain knowledge on the binary a	nalysis					K3		
Outcome	CO2	Develop skill on the iron and cop	oper analysis					K3		
	CO3	Improve practical experience I c	on the calciun	n and n	nagnesii	um analysis	\$	K3		
CO4 Understand the complex formation in different methods K3 CO5 Learn the various complex making process K3										
	CO5	Learn the various complex maki	ng process					K3		
List of Experi	ments									
I) Estimations of Metal Ions in a Binary Mixture										
	1.	Quantitative analysis of a mixtu	re of iron (vo	lumetr	y) and c	opper (grav	vimetry)			
2. Quantitative analysis of a mixture of copper (volumetry) and nickel (gr							avimetry)			
	3.	Quantitative analysis of a mixtu	re of calcium	(volun	netry) aı	nd magnesi	ium (gravir	netry)		
	4.	Quantitative analysis of a mixtu	ure of calciun	n and m	nagnesiu	um (both by	y volumetr	y)		
	5.	Quantitative analysis of a mixtu	re of iron (vo	lumetr	y) and z	inc (gravim	etry)			
	6.	Quantitative analysis of a mixtu	re of copper	(volum	etric) ar	nd zinc (gra	vimetry)			
II)	Pr	eparation of Selected Complexe	S							
	1. Hex	mannine cobalt (III) chloride.								
	2. Pot	assium bisoxalatodiaquo chromat	e (III)							
	3. Hex	athiourea lead (II) nitrate								
	4.Lea	d tetra acetate								
	5. Bis	(pyridiniumhexachloroplumbat	e)							
Lecture Perio	ds: -	Tutorial Periods:-	Practica	al Peric	ods:-30	٦	Fotal Peric	ods:30		
Reference Bo	oks					<u>.</u>				
1. V.V.Ra	amanuja	m, Inorganic Semi Micro Qualitati	ve Analysis,	The Na	tional P	ublication, 3	3 rd Edition,	Reprint 2	2004.	
2. G. Sve	ehila, Vo	gel's Qualitative Inorganic Analysi	is, Pearson P	ublicati	ion, 5"' E	Edition, Rep	orint 2004.			

22

8. Sil

Web References

- 1. https://egyankosh.ac.in/bitstream/123456789/15906/1/Experiment-17.pdf
- 2. https://egyankosh.ac.in/bitstream/123456789/15906/1/Experiment-17.pdf
- 3. https://chemistry.iyte.edu.tr/wp-content/uploads/sites/48/2019/06/CHEM-332-Anorganik-Kimya-Lab. Kitap%C3%A7%C4%B1%C4%9F%C4%B1.pdf

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	2	3	3	3
2	3	2	3	2	3	2	2	2
3	3	2	2	3	2	3	3	3
4	2	2	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

	Continuc	ous Asses	End Semester	Total		
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks
Marks	15	15	10	10	50	100

Department	Mathematics	Programm	e: M.Sc.	Chemi	stry			
Semester	Second Semester	Course Ca	tegory C	Code: SI	EC *End S	Semester	Exam Typ	e:
Course Code	A23PMAS201	Periods/W	eek		Credit	Ma	aximum Ma	arks
		L	Т	P	С	CAM	ESE	TM
Course Name	QUANTITATIVE REASONING AND RESEARCH APTITUDE	2	-	-	2	100	-	100
Prerequisite	Basic mathematical and reasoning know	wledge	.					
	To know the simple interest ar	nd compou	und inte	rest.				
	To know the Permutation and Co	ombination.						
	To gain the knowledge of Time a	and Work P	roblems	•				
Course	To gain the knowledge the of	percentage	e, profit	and los	SS.			
Objectives	To know the concept of coding a	and decodin	g.					
	On completion of the course, the stud	lents will b	e able t	0			BT Mapp (Highest L	oing .evel)
Course	CO1 Learn about the simple interest a	nd compou	nd intere	est.			K3	
Outcome	CO2 Understand the Problems on Training	ins.					K3	
	CO3 Solve the Time and Distance Pro	blems.					K3	
	CO4 Know about the ratio and propor	tion					K3	
	CO5 Understand the Alphanumeric se	ries.					K3	
UNIT-I						Pe	eriods: 6	
Simple interest	and Compound interest.							CO1
UNIT-II						Pe	eriods: 6	
Permutations a	nd Combinations - Problems on Trains							CO2
UNIT-III						Ρε	eriods: 6	l
Time and Work	Problems - Time and Distance Problems	•				i		CO3
UNIT-IV						Ρε	eriods: 6	
Percentage-Pro	ofit and Loss - Ratio and Proportion					<u>i</u>		CO4
UNIT-V						Pe	eriods: 6	
Input and Outp	ut – Coding and Decoding – Alphanumeri	c series – F	Ranking			i		CO5
Lecture Period	ds: 30 Tutorial Periods:-	Practio	cal Perio	ods:-	٦	otal Peri	ods:30	
Reference Boo	oks				L			
1. Quantitati 2. Mathemat 3. Objective	ive Aptitude for competitive Examination- tics for life-M. Immaclate-Nanjil offsetPrir Arithmetic's-R. S-Aggarwal-S. Chand &Co	-AbhijitGuh hters.	a-TMH.					
Text Books								
 Quantitati Chennai.(200 Quantitati Scope and 	ive Aptitude for competitive Examination, D1) ive Aptitude and Reasoning Praveen PHIP I treatment as in "Quantitative Aptitude"	R.S. Aggar .Ltd. by R.S. Agg	wal. S. C arwal. S.	hand ar . Chand	nd company and compa	Ltd,152, ny Ltd.,Ra	Anna salai am Nagar,	, New
Delhi(2007).								

S.S.h

Web References

- 1. https://www.careerbless.com/aptitude/qa/home.php
- 2. https://www.javatpoint.com/aptitude/quantitative
- 3. https://www.letsstudytogether.co/quantitative-aptitude-topic-wise-questions-and-answers-pdf-download/

Evaluation Method

		Contir	nuous Asses	sment Marks (CAM)	End Semester	
Assessment	CAT 1	CAT 2	CAT 3	Assignment*	Attendance	Examination (ESE) Marks	Total Marks
Marks	70			20	10	-	100

S.A.h

Department	Chen	nistry	istry Programme: M.Sc. Chemistry												
Semester	Third		Course Category Code: DSC *End Semester Exam Type: TE Periods/Week Credit Maximum Marks												
Course Code	100	CUT207	Periods/Week Cred			Credit	t Maximum M		larks						
Course Code	AZJP	GH1307	L	Т	P	С	CAM	ESE	TM						
Course Name	INORC	GANIC CHEMISTRY III	4	-	-	4	25	75	100						
Prerequisite	Basi	c Knowledge studied in the UG	Level		ii.			<u>.</u>							
	• To s	tudy the basic principles of crystal	field theory	and spe	ectral an	d magnetic	c propertie	s of comp	exes.						
Course	• To L	o Understand the mechanism of coordination complexes o understand the spectral and magnetic properties of complexes and characterization													
Objectives	Course • To understand the spectral and magnetic properties of complexes and characterization														
	• To R	• To Recall the solid state chemistry.													
	• To u	To understand the structure and functions of metallo biomolecules.													
• C	On co	mpletion of the course, the stud	BT Mapping(Highest Level)												
Course	C01	Recall the basic principles of or magnetic properties of complexes	crystal field s	theory	and sp	ectral and	K3								
Course Code A23PCHT307 Interview Oregon Mathematication for the control of the c															
Culcome	CO3	Understand the spectral and m characterization of inorganic com	agnetic pro pounds.	perties	of comp	lexes and		K3							
	CO4	Recall the solid state chemistry.						K3							
	CO5	understand the structure and fund	ctions of me	tallobior	nolecule	es.		K3							
UNIT-I	COOF	RDINATION CHEMISTRY – II						Period	s: 12						
Crucial field the		politting of d orbitals in actabady	ol footoro of	footing	Ao orlit	ting of d	rhitolo in	totrobodra							

Crystal field theory - splitting of d orbitals in octahedral-factors affecting ∆o, splitting of d orbitals in tetrahedral, tetragonal distorted octahedral (Jahn-Teller effect) and square planar complexes – CFSE- nephelauxetic effect - MO theory of octahedral complexes (in weak field and strong field) - pi bonding and molecular orbital theory- cotahedral complexes-experimental evidence for pi bonding. Term states for "d"- electron systems- energy diagrams and electronic spectrum of dx (d1 to d9) complexes - Orgel diagrams- Tanabe - Sugano diagrams- charge transfer spectra- magnetic properties of complexes- Gouy's method- orbital contribution-spin-orbit coupling and magnetic moments.

UNIT-II COORDINATION CHEMISTRY – III Periods: 12 Inert and labile complexes - Stepwise, overall stability constants -Chelate effect- mechanisms of nucleophilic substitution reactions in octahedral complexes(SN1 and SN2 mechanism) - Aquation (acid hydrolysis) and anation - conjugate base mechanism of base hydrolysis (SN1CB mechanism) - Substitution reactions in square planar complexes - Trans effect- applications and theories of trans effect- electron transfer reactions(redox reactions) - inner and outer sphere mechanisms. CO2

UNIT-III INNER TRANSITION ELEMENTS & CHARACTERISATION OF INORGANIC Periods: 12 COMPOUNDS

Spectral and magnetic properties of lanthanides and actinides-Applications of IR spectroscopy to inorganic compounds- interpretation of IR spectra of complexes containing CO, and SO2 ligands- Applications of NMR to inorganic compounds - NMR of metal hydrides (1H NMR), metal carbonyls(13C NMR), NQR spectroscopy : principle **CO3** and Applications of NQR spectroscopy to the study of complexes- ESR-zero- field splitting - Krammer's degeneracy - pattern for number of lines of complexes having d1-d9 systems -bis(salicylaldimine) Cu(II), Mn(II) complexes-Mossbauer spectroscopy - quadrupole splitting – applications of Mossbauer spectroscopy – iron complex ,sodium nitroprusside..

UNIT-IV THE CHEMISTRY OF SOLID STATE

Periods: 12

Structure of solids- X-ray diffraction method – powder method- single crystal method (rotating crystal method)comparison of X-ray diffraction and Neutron Diffraction - structure of pyrovoskite, cadmium iodide and nickel arsenide - spinels and antispinels- defects in solids, non-stoichometeric compounds. Electrical, magnetic and optical **CO4**

D.A.D

properties of solids- band theory- Semiconductors, superconductors, solid state electrolytes- Types of magnetic behaviour, dia, para, ferro, antiferro and ferrimagnetism.

UNIT-V BIOII	IORGANIC CHEMISTR	Υ	Periods: 12
Metal ions in biology effect in haemoglobin carboxy peptidase- proteins-photosynthes	and its significance –metal - role of globin - structur arbonic anhydrase- cyto is- nitrogen fixation	llobiomolecules-structure and functi e and function of myoglobin –meta ochrome P-450 enzymes-vitamin	ion of haemoglobin - cooperative alloenzymes and their functions- B12 –ferredoxins- blue copper CO5
Lecture Periods: 4	5 Tutorial Peric	ods:-15 Practical Periods:-	Total Periods:60
Text Books			
 F. A. Cotton, G. W New York,1988. J. E. Huheey, E. A K. F. Purcell, and J R.Gopalan V Ram Reference Books 	Keiter, and R. L. Keiter, In . C. Kotz, Inorganic Chemi alingam , Concise coordina	M. Bochmann, Advanced Inorganic horganic Chemistry; 4th ed.; Harper istry; Saunders: Philadelphia,1976. ation chemistry, edition , Vikas Publ	and Row: New York,1983.
 D. F. Shriver, P. W T. Moeller, Inorgan 	. Atkins, and C. H. Langfor ic Chemistry, A Modern Inf	rd, Inorganic Chemistry; 3rd ed.; Ox troduction; John Wiley: New York,19	ford University Press: London,2001. 982.
3. W. L. Jolly, Moderr	Inorganic Chemistry, 2 nd I	Edn, McGraw-Hill International Editi	ion,1991.
4. G. S. Girolami, T. Science Books, Sa	3. Rauchfuss, and R. J. Ar usalito,1999.	ngelici, Synthesis and Technique in	Inorganic Chemistry, 3 rd ed., University
5. W. L. Jolly, The Sy	nthesis and Characterization	on of Inorganic Compounds, Prentic	ce Hall, New Jercy,1970
Web References			

- 1. https://www.chem.uci.edu/~lawm/11-25.pdf
- 2. https://egyankosh.ac.in/bitstream/123456789/71755/3/Unit-3.pdf
- **3.** https://www.shivajicollege.ac.in/Study/Bioinorganic%20Chemistry%20(1).pdf

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	2	3	2	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

Accordmont		Cont	tinuous Ass	CAM)	End Semester	Total	
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	.0	5	5	5	75	100

S.S.h

Department	Chemistry	Program	me: M.S	Sc. Ch	emistry									
Semester	Third	rd Course Category Code: DSC *End Semester Exam Type: TE Periods/Week Credit Maximum Marks												
Course Code	ird Course Category Code: DSC *End Semester Exam Type 3PCHT308 Periods/Week Credit Maximum Mark L T P CAM ESE T													
	AZSF CITI 508	CAM	ESE	TM										
Course Name	ORGANIC CHEMISTRY III	4	-	-	4	25	75	100						
Prerequisite	Basic Knowledge studied in the UG	G Level												
	 Mechanisms and evidences f reactions elimination reactions 	for aromat	ic electr	ophilic	and nuleo	ohilic sub	stitutions,	addition						
Course	Effect of substrate structure. lea	aving group	and atta	ckina :	species in the	above reactions.								
Objectives	Understand the concept of aron	naticity												
Department Semester Chemistry Programme: M.Sc. Chemistry Semester Third Course Category Code: DSC'End Semester Exam Type: Periods/Week Credit Maximum Marks Course Name ORGANIC CHEMISTRY II 4 - 4 25 75 10 Prerequisite Basic Knowledge studied in the UG Level • Mechanisms and evidences for aromatic electrophilic and nuleophilic substitutions, addit reactions, elimination reactions and rearrangements • Effect of substrate structure, leaving group and attacking species in the above reactions. Objectives • Effect of substrate structure, leaving group and attacking species in the above reactions. • Course • Inderstand the pericyclic reactions. K3 Outcome C01 Understand the pericyclic reactions. K3 C02 Recall the organic photochemistry K3 C03 Utilize the retrosynthesis used for various organic synthesis. K3 C04 Know the applications of UV-Visible and IR Spectroscopy K3 C05 Understand the basic principles and instrumentation of mass K3 UNIT-1 Periods: 1 Periods: 1 Cobardetinis econseritry 1.3-5 hexatime and thisr substituet														
	On completion of the course, the stud	dents will I	be able t	0	Ŭ	BT Mapp	ing(Highes	st Level)						
Course	CO1 Understand the pericyclic reaction	ons.					K3							
Outcome	CO2 Recall the organic photochemist	r\/					K3							
Outcome	CO2 Utilize the retrosynthesis used for		rappic ex	nthosi	6		K3 K2							
	CO3 Office the reflosting of LIV Via	ible and ID	Speetro		э.		NJ KO							
	CO5 Understand the basic princip		instrum	ontatio	n of mass		NJ K2							
	specrtometry	JIES AITU	manum	entatio	11 01 111855		КJ							
UNIT-I	PERICYCLIC REACTIONS					L	Perio	ds: 12						
Characteristics	and types of pericyclic reactions- Electr	ocyclic rea	ctions: -	FMO	and PMO n	nethods - t	thermal ar	лd						
photochemical	reactions (ethylene, butadiene, 1,3,5- he)	xatriene an	d their s	ubstitu	ted compour	ids) - Cvc	lisation ar	nd						
ring opening-W	oodward-Hoffman rules – conrotation a	and disrota	tion- ele	ctrocy	lic reactions	of charge	d species	- CO1						
Cycloaddition re	eactions: FMO method- stereochemistry	y of Diels-A	Alder rea	ctions	- substituen	t effects o	n reactivit	у,						
regioselectivity	and stereochemistry 1,3-dipolar	additions	- [2+2	2] cyc	loaddition re	eactions-	sigmatrop	ic						
rearrangement-	correlation diagram method- electrocyc	lic intercon	version	of 1,3-	butadiene a	nd cyclobi	utene- [4+)	2]						
cycloaddition of	ethylene to butadiene.													
UNIT-II	ORGANIC PHOTOCHEMISTRY		-				Perio	ds: 12						
photo chemistr	y of carbonyl compounds: Narrish type -	I and Narris	sh type –	II reac	tions- photo	cycloadditi	ion: Paterr	10						
Buchi reaction,	photochemical dimerization (photo real	uction)- phi	otochem	istry of	r alkenes –c	s-trans is	omerisatio							
photo substitutio	on reactions: - photochemistry of diapes	and aroma	tic comp	uene - ounde.	· photo oxva	nation	ompounds	- 002						
UNIT-III	RETRO SYNTHESIS			ounus			Perio	ds: 12						
Synthons and s	vothotic equivalents - types of syntheses	donor and	accento	r evnt		una reactiv	one - tvnic	പ						
examples P	rotectinggroups-Functional Group Inte	rconversio	n (FGI)	Fund	ctional Grou	n Additio	n (FGA)	-						
monofunctional	disconnection: alcohol disconnection - a	alkene disc	connectio	n - kei	tone disconn	ection - ac	cid and the	eir CO3						
derivatives disc	onnection - alkane disconnection - amir	ne disconne	ection - k	oifuncti	onal 1.2 1.3	3 1.4 1.	5 and 1.0	6-						
disconnections.					, , ,	, , , , ,	, ,							
UNIT-IV	UV- VISIBLE SPECTROSCOPY AN	ID IR SPE	CTROS	COP	Y	Pe	eriods: 12	2						
UV- VISIBLE S	PECTROSCOPY: Basic principles-chror	nophore ar	าd Auxoo	chrome	e concept- al	sorption a	and intensi	tv						
shifts-types of a	absorption bands- solvent effects-absor	ption in cor	njugated	and u	nconiudated	systems-V	Voodward	_						
fieser rules for	calculating absorption maximum in dien	es and α,β	-unsatur	ated ca	arbonyl com	ounds-ap	plications	of CO4						
UV-Visible spec	troscopy in organic compounds	1			- '		•							
IR SPECTROS	COPY: Basic Principles-Finger print re	egion and	functiona	al grou	ıp region –	characteris	stic infrare)d						

absorption- detection of functional groups-applications of infrared spectroscopy- study of hydrogen bondingprogress of reaction- study of keto-enol tautomerism- geometrical isomerism-conformational analysis –qualitative and quantitative analysis.

S.S.h

	-V	MASS SPECTROMETRY Periods: 12									
Basic techr analy stable proce McLa carbo	principle iques (SI sers - de peaks - esses -Ste fferty rea	es - instrumenta MS, FAB, and M tection and quai calculation of m evenson's rule - arrangements -fi ounds – amines	ation - sampling technique MALDI), ESI - Mass analysis ntization - determination of olecular formula - fragmenta α-cleavage-inductive cleav ragmentation of hydrocarbo - and nitrogen compounds	es - ionization methods: s: magnetic, double focusin molecular weight - molecu ation and structural analysi age - two bond cleavage ons - alcohols, phenols, - halides.	(EI, CI, desorpt ng, quadrupole a Ilar ion peak - b s - fundamental - retro Diels-Alc thiols - ethers a	18 Hours) ion ionization and ToF mass ase and meta fragmentation der cleavage - and sulfides -					
Lectu	ire Perio	ods: 60	Tutorial Periods:-	Practical Periods:-	Total F	Periods:60					
1. 2. 3. 4. 5. Refer	P. S. K R. T. M V.K.Ahl Y.R.Sh P. S. Ka rence Bo	Calsi, Organic Re orrison, R. N. Bo uwalia, R.K Para arma , Elemetary alsi, spectroscop poks	eactions and their mechanis byd, S. K. Bhattacharjee Org ashar, Organic reaction mec y organic spectroscopy,5 th e by of organic compounds ,	m, 5 th edition, New Age Int Janic Chemistry, 7th editior Thanisms, Ane Books India dition,S Chand And Comp 7 th edition, New Age Int	ernational Publis n, Pearson Educ Publications, 3r any Limited, 201 ternational Pub	shers, 2021 ation, 2010. d edition, 2009. 8 lishers,2016.					
1. 2. 3. 4.	Jonath edition S. M. N Ltd.198 J. Marc Robert	an Clayden, N , 2016 Mukherji and S 34. ch and M. Smit . M.Silverstein	ick Greeves and Stuart \ . P. Singh, Reaction Mec h, Advanced Organic Che 6 th edition John Wiley & S	Warren, Organic Chemi hanism in Organic Cher emistry, 5th edition, Johr Sons 2007	stry, Oxford Ur nistry, 3rd editi n-Wiley and So	niversity Press, 2nd on, Macmillan India ns.2001.					
Web	Referen	ces									
1. 2. 3.	https://v https://r https://v IX%20U	www.alchemyst nowgonggirlscc www.nou.ac.in/ Jnit-7.pdf	t.co.uk/pdf/Organic/pericy llege.co.in/attendence/cla econtent/Msc%20Chemis	clics.pdf assnotes/files/16280571 stry%20Paper%20IX/MS	89.pdf c%20Chemistr	y%20Paper-					

COs/POs/PSOs Mapping

COs		Progra	m Outcome		Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	End Semester	Total			
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	End Semester Examination (ESE) Marks 75	Marks	
Marks	1	0	5	5	5	75	100	

X2

\$. \$;h

Department	Chemistry	Programm	ne: M.Sc	. Chemis	stry							
Semester	Third	Course Ca	ategory (Code: DS	SC *End	Semeste	r Exam Type	e: TE				
Course Code	A23PCHT309	Periods/W	'eek		Credit	N	/laximum Ma	rks				
		L	T	P	C	CAM	ESE	TM				
Course Name	PHYSICAL CHEMISTRY III	4	-	-	4	25	75	100				
Prerequisite	Basic Knowledge studied in the UG Le	evel										
	• To understand the structure of	electric doul	ole layer									
Course	To know about polarography ar	nd cyclic vol	tametry									
Objectives	To construct the characterisatic	on table and	know ap	oplicatior	ns of group	theory.						
	To solve Schrodinger equation	for multi ele	ctron sys	stems ar	nd know ab	out appr	oximation m	ethods				
	To study about molecular sp	ectroscopy	/			•						
	On completion of the course, the stu	dents will b	be able t	0		ВТ Мар	ping(Highes	t Level)				
	CO1 Understand the behaviour of ele	ectrical doub	le layer				K3					
Course	CO2 Know about the partial molar the	ermodynami	cs prope	erties and	fugacity		K3					
Outcome	CO3 Categorize the molecules based	on the sym	metry ar	nd group	•		K3					
	CO4 Solve Schrodinger equation for	multi electro	on syster	ms and k	now about		K3					
	CO5 Study about molecular spectr	CO5 Study about molecular spectroscopy K3										
						<u> </u>	Dorioda: 1	2				
								_				
UNIT-II Polarography	- experimental setup - advantages	S - I of dropping	mercu	rv electr	ode - su	oportina	Periods: 1	2				
Polarography polarographic p migration curre outline of appli voltammogram - cathodic peak	- experimental setup - advantages of beak maxima - types of peak maxima - nt - diffusion current - polarogram - half ications (Polarogram of Zn2+ and Cd2+ of Fe2+ in H2SO4 - anodic peak current potential - anodic peak potential - electr	of dropping polarograp wave poten +) - cyclic v t - cathodic ochemically	mercu hic peak tial - Ilkc oltametr peak cur irrevers	ry electr maxima ovic equa y, princip rent - ele ible coup	ode - su a suppress ation (deriv- ole, experin ectrochemi ole - outline	pporting or - resid ation is r mental s cally reve of appli	electrolyte dual current not required) et up - cycli ersible coupl cations.	- - c e				
UNIT-III	GROUP THEORY - II						Periods: 1	2				
Multiplication ta	able, Great orthogonality theorem - const	ruction of ch	naracter	table (C2	2V, C3V)-	explanat	ion of a					
character table BF3) - IR & Ra	. Applications of group theory - Normal r aman active - vibration modes -mutual ex	modes of vib clusion rule	oration of	f poly atc	mic molec	ules (H ₂ 0	D, NH_3 and	CO3				
UNIT-IV	SURFACE CHEMISTRY AND HETER	OGENEOUS	S CATAL	_YSIS			Periods: 1	2				
Surface nheno	menon - physical and chemical adsort	ntion - ade	orntion	and froo		alations	at interface	_				
Langmuir adso heterogeneous mechanism - ro	orption isotherm - Gibbs adsorption iso catalysis - mechanism - Langmuir ble of surface in catalysis.	otherm - B Hinshelwoo	ET isoth od mec	hanism	neasureme - Langmu	ent of su uir-Ridea	urface area I bimolecula	- ar CO4				
UNIT-V	MOLECULAR SPECTROSCOPY - II						Periods: 1	2				
NMR - hydro without chem instrumentatic value - hyper Lecture Perioc	ogen nuclei - chemical shift and spir nical exchange - interaction betwe on of NMR - FT NMR- applications fine splitting - zero fieldsplitting - 1 ds: 60 Tutorial Periods:-	n-spin split en spin an s. ESR - p ESR spectr Practi	ting - co d mag rinciple um of f cal Peri	oupling netic fic - posi free radi ods:-	constant eld - gyr tion of E cals.	- splitti o magr SR abs Total Pe	ng with an netic ratio orptions - riods:60	d g CO5				
127	/			-		0	1.1.					
7×					2	S.A	20					
	M.Sc	Chemistry			T	1 / 1	1					

M.Sc Chemistry

1. В ес	.R.Puri , L.R Sharma Madan S Pathania, Principles of Physical Chemistry, 2022, Vishal Publishing co, 48th dition.
2. G	upta M. C., 1993, Statistical Thermodynamics, Wiley Eastern limited, New Delhi.
3. Le E	ee, Sears, Tercotte, 1973, Statistical Thermodynamics, Addision Wesley Publishing Co., London – 1 st dition.
4. R	K.Prasad, Quantum Chemistry, New age international publishers, 4 th revised edition, 2020.
5. P	K.Bhattacharya, Group Theory and its applications, Himalaya Publishers. 3rd edition. 2014.
Refe	rence Books
1. A	ntropov L., 1999, Theoretical electrochemistry, MIR Publications, New Delhi.
2. G	lasstone S., 2002, An Introduction to Electrochemistry, Von Nostrand Co. Inc., Toronto.
3. K	uriakose J. C., Rajaram, J. 1999, Thermodynamics, III edition, Shobanlal Nagin Chand, New Delhi, India.
4. H	W. Hanna, 1993, Quantum Mechanics in Chemistry-Benjamin –CummizaLondon Publishing Company,
N	ew Delhi. India.

 Chandra A. K., 1988, Introductory Quantum Chemistry, 3rd edition, Tata McGraw-Hill Publishing Co, New Delhi, India

Web References

Text Books

- 1. https://www.ccri.edu/chemistry/courses/chem_1100/terezakis/notes/Chapter_19_Lecture_Notes.pdf
- 2. https://pages.mtu.edu/~kreher/ABOUTME/syllabus/GTN.pdf
- 3. https://www.uou.ac.in/lecturenotes/science/MSCPHY-17/Spectroscopy%20by%20Dr.%20Papia%20Chowdhury.pdf

COs		Progra	m Outcome		Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

COs/POs/PSOs Mapping

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	CAM)	End Semester	Total Marks	
Assessment	CAT 1	CAT 2	Model Exam	Attendance	Examination (ESE) Marks		
Marks	10		5	5	5	75	100

Department	Chemistry Programme: M.Sc. Chemistry											
Semester	Third	Course C	ategory	Code: I	DSE *End S	Semeste	r Exam Ty	pe: TE				
Course Code	A23PCHE307	Periods/V	/eek		Credit	Ma	ximum Ma	arks				
		L	T	P	C	CAM	ESE	TM				
Course Name	BIOORGANIC CHEMISTRY	4	-	-	4	25	75	100				
Prerequisite	Basic Knowledge studied in the UG	6 Level	i	.ii.		i.						
~	To apply a range of computa	To apply a range of computational tools to address toxicological questions										
Course	To give students skills in the retrieval, processing, dissemination, and use of information											
Objectives	systems for chemical/biologic	cal informa	tion and	d structu	res							
	• To prepare for a career in in-silico toxicity prediction in the pharma, industry etc.											
	On completion of the course, the stud	dents will b	e able t	0		BT Mappi	ng(Highest	Level)				
	CO1 Understand the reactivity of heterocycles. K1 K3											
Course	CO2 Outline the structure and functio		K3									
Outcome	CO3 Apply the separation concepts o	on aminoacio	ds. K3				K3					
	CO4 lidentify the mechanism of prepa	ocycles.		K3								
	CO5 Compare the organic reaction me	echanism w	ith enzyı	me mech	anism		K3					
UNIT-I	HETEROCYCLES 1					P	eriods: 12	2				
substitution m structures of tria substitution read UNIT-II Propagation of it	Azoles, and tetrazole and their tautomers ations HETEROCYCLES 2	s - quinoline	and isc		e - electrop	hilic and	eriods: 12	² CO1				
azines (oxazine furan, thiophene heterocycles in	and azepine)-electrophilic aromatic sub e and indole - electrophilic addition in DielsAlder reactions.	ostitution rea furan - lith	actions i iation in	n five m furan a	embered he	eterocycle ne - five	es - pyrrole membered	, d CO2				
UNIT-III	NUCLEIC ACIDS					P	eriods: 12	2				
Structures and reaction-mecha NADPH and GT transcription - ri in HIV treatmen	names of nucleosides and nucleotides nisms for phosphoryl transfer reactions P - Nucleic acids - DNA and RNA - prin bosomal RNA - transfer RNA - translation t	s - ATP - c s - structure mary and de on -base see	arrier of es of dir ouble he quencing	chemic nucleotid lical stru of DNA	al energy - es - NAD+ ctures - ba - DNA fing	 phospho , NADF se pair - erprinting 	oryl transfe P+ , NADH replication - AZT drug	r , - CO3				
UNIT-IV	CARBOHYDRATES AND AMINO A	CIDS				P	eriods: 12	2				
Carbohydrates: monosaccharide glucose. Amino Synthesis of am amino acids - Po	The reactions of monosaccharides in es - the Wohl degradation - measuring acids: Separation of amino acids - nino acids - HVZ reaction - N-Phthalimide eptide bonds and disulfide bonds	n basic so g the blood electrophor omalonic es	lutions glucose esis - T ter syntl	- oxidati e level ir TLC - lo nesis - R	on and re n diabetes n exchang esolution o	duction r - anome e chroma f racemic	eactions o ric effect ir atography mixtures o	f 1 - CO4 f				
UNIT-V	ENZYME CATALYSIS AND LIPIDS					P	eriods: 12	2				
Enzyme Cataly mechanism of phospholipids	sis: Types of enzymes - names - Ac carboxypeptidase A. Lipids: Fatty acid prostaglandins - biosynthesis of prostag	tive site - ls - omega glandins, thr	molecul fatty ac omboxa	ar recog cids - w nes, and	nition - loc axes - fats prostacycli	ck and k and oils ns.	ey model s - PUFA	- CO5				
Lecture Perio	ds: 60 Tutorial Periods:-	Practi	cal Per	iods:-	Т	otal Per	iods:60					

×2

\$. \$.h

Text B	ooks
--------	------

- 1. Clayden J, Greeves N and Warren S, Organic Chemistry, 2nd Edition, Oxford University Press, New York, 2012.
- 2. Bruice P Y, Organic Chemistry, 4th Edition, Pearson Education, New Delhi, 2012

Reference Books

1. Rodwell D, Bender D and Botham K, Harper's Illustrated Biochemistry, 31st Edition, McGraw Hill Professional, New York, 2018.

2. Stryer L, Berg J M, Tymoczko J L and Gatto G, Biochemistry, 9th Edition, W. H. Freeman and Company, New York, 2019.

Web References

1.https://www.uou.ac.in/lecturenotes/science/MSCCH-17/CHEMISTRY%20LN.%203%20HETEROCYCLIC%20COMPOUNDS-converted%20(1).pdf

2.https://www.hansrajcollege.ac.in/hCPanel/uploads/elearning/elearning_document/imgtopdf_generated_16042017470 31.pdf

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs)			
	PO1 PO2 PO3 PO4 PO5		PSO1	PSO2	PSO3				
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	End Semester	Total			
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks	
Marks	10		5	5	5	75	100	

S. Sit

Department	Chemistry	Programm	e: M.Sc.	Chemis	stry					
Semester	Third	Course Ca	tegory C	Code: DS	SE *End S	emester l	Exam Typ	e: TE		
Course Code		Periods/W	eek		Credit	Ma	ximum M	arks		
	AZJF CITEJ00	L	Т	Р	С	CAM	ESE	TM		
Course Name	BASICS OF FORENSIC SCIENCE	4	-	-	4	25	75	100		
Prerequisite	Basic Knowledge studied in the UG Lev	vel		.±						
Course	 To create awareness about the importance of chirality for organic synthesis and for biological activity 									
Objectives	Apply the important principles	s of stereo	chemist	ry and ι	understand	I them.				
	On completion of the course, the stud	BT Mappi	ng(Highe	st Level)						
	CO1 Understand the basic concept of		K3							
Course	CO2 Able to synthesize on chiral subs	K3								
Outcome	CO3 Use chiral substrate to synthesize	K3								
	CO4Utilysze chiral auxiliary to synthesize asymmetric compoundsK3									
	CO5 handle chiral catalyst to synthesiz	ze asymme	tric com	pounds			K3			
UNIT-I	CONCEPTS OF FORENSIC SCIEN	ICE			i		Period	ls: 12		
Forensic Scier Information – In Functions of th and Recording examples.	nce- History and Development of Fore ndian and Other Forensic Science System re Forensic Scientist -Crime Scene Inves the Crime Scene - Crime Scene Investig	ensic Scien ns - The Org stigation - T gation Proc	ce - W ganizatic he Crim ess - Re	hat Is a on of For e Scene ecognitio	a Forensic rensic Scien e as Recent n of Bloods	Scientist ce Labora History - tain Patte	? - Care atories- T Preservii erns – oth	er he ng CO1 er		
UNIT-II	FORENSIC SCIENCE IN THE LABO	ORATORY					Period	ls: 12		
The Forensic I Fluids and Stai Forensic Footy Examinations -	Laboratory - Identification and Characteri ns - Techniques of DNA Analysis - Microa wear Evidence - Forensic Tire Impress Questioned Documents - Analysis of Cor	ization of B analysis and sion and T htrolled Sub	lood an d Examin ire Trac stances	d Bloods nation of ck Evide	stains Ident Trace Evid ence - Fire	ification c ence – Fi arm and	f Biologic ngerprints Tool Ma	al 3 - ırk CO2		
UNIT-III	FORENSIC ENGINEERING AND IN	IVESTIGA	TION				Period	ls: 12		
Forensic Patho Examiners - D Teamwork App	ology - How to Become a Forensic Pa eath Investigation Process - The Postmo proach - The Human Skeleton - Identifica	athologist - ortem Inter ation of Sk	Investig val (PMI eletal Re	ation of)—Time emains -	Death: Co of Death - - The Signif	oroners a - Exhuma ficance of	nd Medic itions - T Age - T	ne ne CO :		
Biological Profi	le -Individualization of Human Bone - Coll	ection of Bo	ones - Fo	orensic (Ddontology					

UNIT-IV FORENSIC TRACE EVIDENCES

Periods: 12

Forensic Analysis of Metals, soils, Plants, Paints – The Chemistry of fire and analysis of flammable residues -Explosions and Explosives - Collection and Analysis of Evidence of Explosives – Fingerprints – History of Fingerprints - Classification of Fingerprints - Automated 97 Fingerprint Identification Systems- Methods of Detecting Fingerprints - Preservation of Developed Prints- Digital Imaging for Fingerprint Enhancement - Document Examination - The Document Examiner - Handwriting Comparisons-Typescript Comparisons-Alterations, Erasures, and Obliterations

UNIT-V LEGAL ASPECTS OF FORENSIC SCIENCE

Periods: 12

Forensic Science and the Law - Admissibility of Evidence - Laboratory Reports - Expert Testimony - Countering Chaos- Logic, Ethics, and the Criminal Justice System - Forensic Science and the Law - Legal Issues in Forensic DNA

S.A.h

Lecture Periods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60
Text Books			
1. Jay A. Siegel, Kathy Mir	akovits, Forensic Science: The	e Basics, 2 nd Edition, CRC	Press, 2010.
2. Stuart H. James, Jon J Scientific and Investigative	. Nordby, Suzanne Bell, Stuar Techniques, CRC Press, 2002	rt H. James, Jon J. Nordby 2.	Forensic Science: An Introduction to
3. Richard Saferstein, Fore	nsic Science, An Introduction,	Pearson Education, Inc. (Pe	earson Prentice Hall), 2011.
Reference Books			
1. Robert Milne, Forensic Ir	ntelligence, Taylor and Francis	Group, 2013.	
2. Robert Bruce Thomps Experiments-DIY Science-0	on and Barbara Fritchman D'Reilly Media Inc., 2012.	Thompson, An Illustrated	Guide to Home Forensic Science
3. Louis B. Schlesinger, Se	xual Murder Catathymic and C	Compulsive Homicides, CRC	Press, 2004.
4. Terrence F. Kiely, Foren	sic Evidence: Science and The	e Criminal Law, CRC Press	_LC, 2001.
Web References			
1 http://ijanc.com/uploa	d/MNIAPC-13-13-17-P-75-82 p	df	

1.http://ijapc.com/upload/MNAPC-13-I3-17-P-75-82.pdf 2.https://www.ojp.gov/pdffiles1/Digitization/143821NCJRS.pdf

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs)			
	PO1	PO1 PO2 PO3 PO4 PO5		PO5	PSO1	PSO2	PSO3		
1	3	3	3	3	3	3	3	3	
2	2	2	2	2	2	2	3	3	
3	3	3	3	3	2	3	2	2	
4	2	3	2	1	3	2	3	2	
5	2	2	3	3	3	3	2	3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	End Semester	Total			
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks	
Marks	10		5	5	5	75	100	

S.S.N

Department	Chem	istry	Programme: M.Sc. Chemistry									
Semester	Third		Course Ca	ategory	/ Code:	DSE *End	Semeste	er Exam Ty	'pe: TE			
Course Code	A23P0	CHE309	Periods/M	/eek		Credit	M	aximum Ma	arks			
			L	Т	P	C	CAM	ESE	TM			
Course Name	POLY	MER AND PLASTICS	4	-	-	4	25	75	100			
Prerequisite	Basic	Knowledge studied in the UG Le	evel									
	To mak	To make the students learn the concept of polymers and plastics.										
Course	To und	derstand the classification of poly	mers.									
Objectives	To und	erstand the methods of molecula	r weight det	erminati	ion.							
	To lea	rn the importance of freons and r	ubber									
	To mak	ke the students learn the concept	of polymers	and pla	astics.							
On completion of the course, the students will be able to BT Mapping(Highest L												
	CO1	Classify the different types of pol		K3								
Course	CO2	Illustrate the importance of stere	eochemistry	of polyn	ners			K3				
Outcome	CO3	Apply the methods for determina		K3								
	CO4	Acquire knowledge on the variou		K3								
	CO5	Differentiate thermoplastic and th	hermosetting) plastic	;			K3				
UNIT-I	BASI	C CONCEPTS					I	Periods: 12	2			
addition and co	ndensat	ion polymers. General methods of and ring opening. Coordination of	of preparatio	n of pol	lymers. F hesis of l	olymerizat	ion throu	gh functiona	1			
	etoll		olymenzalio	in. Synti		iigii		Dariada, 14	CO1			
UNIT-II	Jand o	vision linked Storeschemistry of	nolumoro lo	otootio	Sundia	taatia and	Atactia		£ .£			
polymers : The	crystalli	ne melting point. The glassy state	e and glass t	transitio	n tempe	rature		oropenies o	CO2			
UNIT-III	COPC	DLYMERISATION					I	Periods: 12	2			
Definitions – ł	nomo a	nd copolymers. Block copolyme	ers and Gra	aft copo	olymers.	Molecular	weight	of polymers	·-			
Number averag	ge mole smome	cular weight and weight averag try methods	ge molecular	weight	t. Deterr	nination of	molecula	ar weight by	[′] CO3			
UNIT-IV	POLY	OLEFINS					I	Periods: 12	2			
-polythene,PT natural rubber. I	FE , Fre Butyl, B	eons ,PVC ,polypropylene and po una, Buna-S , BunaN, Neoprene	olystyrene. 4 , SBR, Thio	.2. Natu col, Pol	iral and s yurethan	synthetic ru e and silico	ibbersC one rubbe	onstitution o ers.	f CO4			
UNIT-V	PLAS	TICS AND RESINS DEFINITI	IONS.				I	Periods: 12	2			
Thermoplastic a catalysts. Uses	and thei of thern	rmosetting resins. Constituents c noplastic resins and thermo settir	of plastic-fille	ers, dye	s, pigme	ents, plastic	cizers, Lu	bricants and	¹ CO5			
Lecture Perio	ods: 60	Tutorial Periods:-	Practi	cal Pe	riods:-	•	Total Pe	riods:60				
Text Books			k			i						
1.V. R. Gowrika	r.N.V.V	/iswanathan : Polymer Science- \	Wilev Easter	n Limite	ed New	Delhi, 1986	3					
2. S.S.Dara , A	Text Bo	ook in Engineering Chemistry, S.C	Chand & Cor	npany L	_td, New	Delhi. Thir	d Edition	,!992.				
Reference Bo	oks											
1. R.B.Sevmou	r, Introd	uction to Polymer Chemistry. MC	Craw Hill. N	lew Yor	k 1971.							
Web Referen	ces		, -									

\$. \$. h

1. https://unacademy.com/content/wp-content/uploads/sites/2/2022/10/33.-Polymer-Notes.pdf

2. https://www.vssut.ac.in/lecture_notes/lecture1541230922.pdf

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

		Cont	inuous Ass	CAM)	End Semester	Total	
Assessment	CAT CAT Mode 1 2 Exam		Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5 5		75	100

S.S.W

Department	Chemi	stry									
Semester	Third	Course Cat	egory C	Code: D	SC *End S	emeste	er Exam Typ	be: PE			
Course Code	A23PCHI 305	Periods/We	ek		Credit	Ν	Maximum M	larks			
		L	Т	Р	С	CAM	ESE	TM			
Course Name	ORGANIC CHEMISTRY LAB – II	-	-	4	2	50	50	100			
Prerequisite	Basic Knowledge studied in the UG L	evel									
	To learn about critical solution	system and d	istributio	on coeff	icient						
	To understand rate constant of	f the reaction	and Cor	mpariso	n of acid str	engths					
Course Obiectives	To Analyse the activation and frequency factor										
,	To learn about Molecular weight of the compound										
	To analyze phase diagram of compound										
	On completion of the course, the stu	udents will be	e able to	0		B	T Mapping Leve	(Highest I)			
Course	CO1 Learn about critical solution sys	stem and dist	ribution	coefficie	ent		K3				
Outcome	CO2 Understand rate constant of the reaction and Comparison of acid strengths							K3			
	CO3 Analyse the activation and frequ		K3								
	CO4 Learn about Molecular weight of	CO4 Learn about Molecular weight of the compound									
	CO5 Analyze phase diagram of com	ipound					K3				
List of Experii	ments										
ORGANIC ES	TIMATIONS										
1.Estimation of	fphenol										
2. Estimation o	f aniline.										
3.Estimation of	fglucose										
4. Estimation o	f ascorbic acid.										
5. Estimation o	f ketone.										
6.Determinatio	n of iodine value of an oil										
7.Determinatio	n of saponification value of an oil										
Extraction of na	atural products										
8.Isolation of c	itric acid from lemon										
Lecture Perio	ds: - Tutorial Periods:-	Practic	al Peric	ods:-30	Т	otal Pe	eriods:30				
Reference Bo	OKS										
1.N.S.Gnanapi 2.Venkateswar Sultan Chand a	ragasam, G.Ramamurthy (2022) Organi ran, V., Veeraswamy, R. &Kulandaivelu, & Sons	c chemistry la A. R. (1997).	ib manu Basic P	ial, Ana rinciple	nda Book Do s of Practica	epot,ch I Chem	ennai istry, (2nd E	Ξd.).			

2. Furniss B S, Hannaford A J, Smith P W G, and Tatchell A R, Vogel's Textbook of Practical Organic Chemistry, 5th Edition, Pearson publication

Web References

1.https://jru.edu.in/studentcorner/lab-manual/bpharm/3rd-sem/Lab%20Manual%20of%20Organic%20Chemistry%20II.pdf 2.https://mlrip.ac.in/wp-content/uploads/2022/03/PHARMACEUTICAL-ORGANIC-CHEMISTRY-II-LAB-MANUAL.pdf

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

	Continuo	ous Asses	End Semester	Total			
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks	
Marks	15	15	10	10	50	100	

S.S.N

	Chem	istry	Programme	e: M.Sc.	Chemistry	,							
Department Semester	Third		Course Cat	egory C	ode: DSC	*End S	emester	Exam Typ	e: PE				
	4000	NIII 000	Periods/We	ek		Credit	Ma	Maximum Marks					
Course Code	A23PC	JHL306	L	Т	Р	С	CAM	ESE	ТМ				
Course Name	PHYS	ICAL CHEMISTRY LAB – II	-	-	4	2	50	50	100				
Prerequisite	Basic	Knowledge studied in the UG Level											
0	•	To understand and develop the practical experience on conductometric experiments											
Course Objectives	To learn practical knowledge on potentiometric experiments												
	To understand the practical knowledge on PH metry												
	On cor	npletion of the course, the stud	dents will be	able to			BT	Mapping Level	(Highest)				
Course	C01	Gain knowledge on Conductom	etric titration					K3					
Outcome	CO2	Develop skill on Verifying De By	ye - Huckel- C	nsagar	equation			K3					
	CO3	Improve practical experience I	on Verifying	the Ostv	vald's Dilu	tion law		K3					
	CO4	Understand the potentiometric	titration					K3					
	CO5	Learn the determination of ionis	sation consta	nt using	pH meter			K3					

List of Experiments

CONDUCTOMETRIC EXPERIMENTS

1. Mixture of acids Vs Strong Base Titration [(HCI+CH₃COOH) Vs NaOH

2. Precipitation titration [mixture of halides Vs silver nitrate]

3.Verifying De Bye - Huckel- Onsagar equation and Determination of equivalent conductance of a strong electrolyte at infinite dilution

4.Verifyng the Ostwald's Dilution law and determination of ionisation constant of a weak electrolyte (oxalic acid) by conductivity method

POTENTIOMETRIC EXPERIMENTS

5. Precipitation titration [Chloride ion Vs silver nitrate]

6.Precipitation titration [iodide ion Vs silver nitrate]

7.Precipitation titration [mixture of halides Vs silver nitrate]

8.Redox titration [Iron (II) Vs K₂Cr₂O₇]

9. Redox titration [Iron (II) Vs Ce (IV)]

10.Dissociation Constant of weak electrolyte using quin hydrone electrode

pH METRY

11. Determination of first and second ionisation constant of a dibasic acid (oxalic acid) using pH Meter.

Lecture Periods: -	Tutorial Periods:-	Practical Periods:-30	Total Periods:30
Reference Books			

X2

S.A.h

1. Lab Manual, Department of Chemistry, SMVEC (Autonomous), Madagaipattui.

2. Venkateswaran V, Veeraswamy R and Kulandaivelu A R., Basic Principles of Practical Chemistry, 2nd Edition, Sultan Chand & sons, New Delhi, 1997.

3. Daniels, Mathews F, Howard J and John Warren W, Experimental Physical Chemistry, 7th Edition, Mc Graw Hill, New York, 1970.

4. Findlay A, Practical Physical Chemistry, 7th Edition, Longman, London, 1959.

Web References

1.https://people.iitism.ac.in/~download/lab%20manuals/chemistry_chembio/CYC%20517%20%20%20Physical %20Chemistry%20Lab%20II%20MSC%203rd%20SEM.pdf

2.http://kuno.crc.nd.edu/wordpress/wp-content/uploads/2018/02/Chem332_Spring_13.pdf

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

	Continuc	ous Asses	End Semester	Total			
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks	
Marks	15	15	10	10	50	100	

S.A.h

Department	Chem	istry	Programm	e: M.Sc.	Chemis	stry			
Semester	Third		Course Ca	ategory C	ode: SE	EC *End S	emes	ter Exam Typ	e:
	A23P	CHS301	Periods/W	eek		Credit		Maximum M	arks
			L	Т	Р	С	CAI	M ESE	TM
Course Name	ADVA METH	NCE RESEARCH IODOLOGY IN CHEMISTRY	2	-	-	2	100	D -	100
Prerequisite	Basic	mathematical and reasoning kno	owledge	i.	ii.		i		i.
	•	To know about research, aim, ob	ojectives and	d princip	les				
	•	To know about conduct of rese	arch work						
0	•	To gain the knowledge on separ	ration and c	haracter	ization t	echniques			
Course	•	To gain the knowledge about ev	aluation ar	nd statis	tical tre	atment of a	analyt	tical data	
Objectives	•	To know the concept of thesis v	writina						
	On co	mpletion of the course, the stud	dents will b	e able to	D			BT Mapı (Highest L	oing .evel)
Course	CO1	Learn about the research, aim, o	bjectives ar	nd princi	ples			K3	
Outcome	CO2	Understand the research work						K3	
	CO3	Gain the knowledge on separation	on and char	acterizat	ion tech	niques		K3	
	CO4	Gain the knowledge about evalu	cal	K3					
	CO5	know the concept of thesis writi	ng					K3	
UNIT-I	INTR	ODUCTION	J					Periods: 6	
Nature and imp survey of scier patents.	portanc ntific lite	e of research - aims, objective, rature - primary and secondary	principles a sources - c	and prob sitation ir	olems - ndex for	selection of scientific p	resea apers	arch problem and journals) - ; - CO1
UNIT-II	CONE	OUCT OF RESEARCH WORK						Periods: 6	
Chemistry of v radioactive ma safety measure different concer	vorking terials(s s – wei ntration	with hazardous materials - acio storage and handling of chemic ghing process in using electronic of molarity, molality, normality so	d / base / als)-first aid balance- er lution- Phys	water se d technic rors in w ical prop	ensitive, ques- ha reighing- erties u	corrosive, azards in la - weighing b seful in anal	toxic, aborat ottles- ysis.	explosive an ory- laborato - preparation	nd CO2 iry of
UNIT-III	SEPA	RATION AND CHARACTERI	SATION T	ECHNIC	QUES			Periods: 6	
Methods of se sublimation – d working princip ¹ H, ¹³ C spectros	paration istillatio le and copy, n	n prior to analysis - Isolation te n-methods for vacuum sublimatic applications of TLC , Column ch nass spectrometry, XRD,SEM and	echniques - on and distil romatograp d TEM in the	 extractilation un hy, HPL analysi 	ion - So der redu C- appli s of che	oxhlet extra uced pressu ications only emical comp	ction, re .Ch y for l ounds	crystallizatic rromatograph JV-Visible,I S.	'n, y- R,
UNIT-IV	EVAL	UATION AND STATISTICAL	TREATME	INT OF	ANAL	TICAL DA	ATA	Periods: 6	
Precision and a distribution of r the Q test -sigr least square an	accurac andom nificant alysis-	 y – errors - types - determinate errors -normal distribution curve figures - reporting data and prese correlation coefficient. 	and random -rejection of t	n errors of data - tabulated	 rules criteria data- of 	for improvin for rejection data plotting	ig acc n of ai i - sca	uracy of data n observatior atter diagram	1 - CO4 1 - 1S-
UNIT-V	THES	IS WRITING						Periods: 6	
Conventions of of tables and fi meanings and e	writing gures - example	 the general format - page and c referencing - appendices - revisi es of commonly used abbreviation 	hapter form	at - use and eval	of quota uating th	tions and fo ne final proc	otnote luct -	es - preparation proof reading	^{on} CO5
Lecture Period	ls: 30	Tutorial Periods:-	Practi	cal Perio	ods:-	Т	otal P	Periods:30	
Reference Boo	oks								
1. Douglas A. S 2. J. Anderson	Skoog a , H.M. [nd Donald, M. West, Fundamenta Durston and M.Poole, Thesis and	al of analytic assignment	al chemi writing -	stry, Ha Wiley E	It Saunderso Eastern Ltd.,	ons In (1970	ternational E 0).	dition.

×2

8. S. N

Text Books	
1. J. March, Advanced org 2.Vogel's Textbook of qua 3. Rajammal P. Devados,	janic chemistry - reactions, Mechanism & Structure. McGraw Hill Student Edition. Intitative chemical analysis, ELBS edition. Research Methodolgy
Web References	
1.http://ndl.ethernet.edu 0Writing%20%28Chem	i.et/bitstream/123456789/78707/1/Research%20Methodology%20and%20Scientific%2 %20453%29.pdf
2.https://www.vidvawar	a.com/01/wp-content/uploads/2017/02/Research Methodology.pdf

Evaluation Method

		Contir	nuous Asses	sment Marks (CAM)	End Semester		
Assessment	CAT	CAT	CAT 2	Assignment*	Attendence	Examination (ESE)	Total Marks	
	1	2	CAT 5		Attenuance	Marks		
Marks		70		20	10	-	100	

S.S.N

Department	Chemistry	Programme: M.Sc. Chemistry										
Semester	Fourth	Course Ca	tegory	Code:	DSC *End	Semeste	r Exam T	ype: TE				
Course Code	A23PCHT410	Periods/Week Credit				Maximum Marks						
		L	Т	Р	С	CAM	ESE	TM				
Course Name	ORGANIC CHEMISTRY IV	4	-	-	4	25	75	100				
Prerequisite	Basic Knowledge studied in the UG	Level						å				
	To improve knowledge on the N	MR Spectros	сору									
0	To understand NMR Techniques	s and identifie	cation o	of Organ	nic compour	nds						
Course	To know about structure , synthesis and applications of heterocycles and steroids											
Objectives	 To understand about classification, structure, synthesis and applications of terpenes and alkaloids 											
	To improve knowledge on the proteins and nucleic acids											
	On completion of the course, the stuc	BT Mappi	ng(Highes	st Level)								
Course	CO1 Improve knowledge on the NMR	K3										
Outcome	CO2 Understand NMR Techniques an	d identificatio	on of O	rganic c	ompounds	s K3						
	CO3 Know about structure , synthesis steroids	and applica	tions o	f hetero	cycles and		K3					
	CO4 Understand about classification,	structure, sy	ynthesi	s and ap	oplications		K3					
	CO5 Improve knowledge on the protei		K3									
UNIT-I	¹ H - NMR & ¹³ C-NMR SPECTROSC	OPY					Perio	ds: 12				
Nuclear spin - principles of NN shift, spin- spir coupling- ¹ H NN exchange, ¹³ C I	magnetic moment of a nucleus - nucle IR experiments - CW and FT NMR - 1H n coupling- coupling constant- geminal IR spectra of simple AX and AB spi	ar energy le NMR - Che coupling –vi n systems- nce spectra	vels in mical s icinal c Nuclea ¹³ C NM	the preshift - factoring coupling ar Over	esence of r ctors influer -Karplus ec hauser effe ctra of simp	nagnetic f ncing proto quation – ect (NOE) le organic	ield - bas on chemic long rang . Chemic molecule	al ge cont cal				

DEPT Experiment.

UNIT-II 2D NMR TECHNIQUES AND SPECTROSCOPIC IDENTIFICATION OF ORGANIC COMPOUNDS

Basic principles of two dimensional NMR spectroscopy – ¹H -¹H COSY, ¹H -¹³C COSY, HETCOR, HSQC, HMBC, NOESY spectra- Identification of organic compounds using UV, IR and NMR spectroscopy and mass spectrometry – problems.

UNIT-III HETEROCYCLES AND STEROIDS Periods: 12

HETEROCYCLES: Structure and Synthesis of imidazole, flavones, isoflavones, anthocyanins, pyrimidines (cytocine, uaracil only) and purines (adenine, guanine only). Steroids: Structural elucidation of cholesterol-Bio synthesis of cholesterol-Conversion of cholesterol to progesterone.

UNIT-IV TERPENES AND ALKALOIDS Periods: 12 TERPENES: Introduction - classification - isoprene rule - structural determination of terpenoids - Citral, geraniol – farnesol,α-pinene and camphor. ALKALOIDS: Introduction - isolation of alkaloids – Structure and synthesis of quinine – morphine. CO4

UNIT-V	PROTEINS AND NUCLEIC ACIDS	Periods: 12	
Nucleic acids:	Types of nucleic acids – DNA & RNA polynucleotide chain. Components – Struct	ure and role of	
(genetic code)	DNA and RNA (Nucleotides only). Proteins: Biosynthesis of proteins -Peptides and t	heir synthesis –	
synthesis of tr	ipeptide. Merrifield synthesis, End group analysis of peptides, Primary, Seconda	ary and tertiary C	:05
structure of pro	teins, Determination of tertiary structure of proteins.		

S.A.h

Periods: 12

Lectui	re Periods: 60	Tutorial Periods:-	Practical Periods:-	Total Periods:60
Text B	Books			
1. 2. 3. 4. 5.	Y.R.Sharma , Elemetary P. S. Kalsi, spectroscop I. L. Finar, Organic Cher D.N. Sathyanarana, "Ha O. P. Agarwal, Chemistr	v organic spectroscopy,5 th e y of organic compounds , 7 th nistry Vol-2, 5th edn, Pears ndbook of Molecular Specti ry of Organic Natural Produc	dition,S Chand And Compar ^h edition, New Age Internatio on Education Asia, 1975. oscopy", Wiley pub. Second cts, Vol. 1, Goel Publishing H	ny Limited, 2018 onal Publishers,2016. I Edition-2019. House, Meerut, 1997
Refere	ence Books			
1. 2. 3. 4. 5.	Robert. M.Silverstein 6 th Jonathan Clayden, Nicl 2016 O. P. Agarwal, Chemistr Shoppe, Chemistry of th W. Kemp, Applications of	edition John Wiley & Sons Greeves and Stuart War of Organic Natural Produ steroids, Butterworthes, of Spectroscopy, English Lar	2007 ren, Organic Chemistry, Ox cts, Vol. 2, Goel Publishing H 1994 nguage Book Society, 1987	xford University Press, 2nd edition, łouse, Meerut, 1997.
Web F	References			
1.ht 2.ht	tps://www.vanderbilt.edu/ tps://kud.ac.in/admin_par	AnS/Chemistry/Rizzo/chem nel/dept/lms/NMR.pdf	220a/Ch13slides.pdf	

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program S	pecific Outco	Outcomes (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

Assessment		Cont	tinuous Ass	End Semester	Total		
	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	10		5	5	5	75	100

S.S.N

Department	hemistry Programme: M.Sc. Chemistry											
Semester	Fourth	Course Ca	itegory C	ode: D	SC *End	Semester I	Exam Typ	e: TE				
Course Code	A23PCHT411	Periods/W	eek		Credit	Ma	ximum M	arks				
		L	Т	Р	С	CAM	ESE	TM				
Course Name	PHYSICAL CHEMISTRY IV	4	-	-	4	25	75	100				
Prerequisite	Basic Knowledge studied in the UG	Level										
_	To understand the structure of	of electric doub	le layer									
Course	To know about polarography	out polarography and cyclic voltametry										
Objectives	To construct the characterisa	tion table and	know ap	plicatio	ns of group	theory.						
	To solve Schrodinger equation	To solve Schrodinger equation for multi electron systems and know about approximation methods										
	To study about molecular s	spectroscopy										
	On completion of the course, the s	tudents will b	e able to	0		BT Mappi	ng(Highe	st Level)				
	CO1 Understand the behaviour of e	electrical doubl	e layer				K3					
Course	CO2 Know about the partial molar t		K3									
Outcome	CO3 Categorize the molecules bas		K3									
	CO4 Solve Schrodinger equation for	or multi electro	n systen	ns and I	know about		K3					
	CO5 Study about molecular spec	ctroscopy					K3					
UNIT-I	SOLID STATE	Periods: 12										
Physical equil Incongruent sy - hydrate form	ibria involving phase transition: Two stem (sodium chloride- water) - Perited ation (sodium chloride - sodium sulp	component sy ctic reactions. T hate - water);	ystem - Three co Liquid -	Congru mponer · Liquid	ient system nt system: S equilibria) (phenol-a Solid - Liqu - one pair	aniline) a id equilib of partia	nd ria Ily CO2				
(water - ethyl a	Icohol - succinic nitrile)				5 pairs of pa	artiany mis		us				
UNIT-III	KINETICS OF COMPLEX REAC	TIONS & FA	ST REA		NS	F	Periods:	12				
Kinetics of co general treatm reactions - rel methods.	mplex reactions, reversible reactions ent of chain reactions - chain length laxation methods - temperature and	s, consecutive - Rice Herzfe pressure jum	reaction eld mecl ap metho	ns, par hanism ods sto	allel reaction - explosion Popped flow	ons, chain Iimits. St and flash	reaction tudy of fa photolys	ast Sis CO3				
UNIT-IV	ANALYTICAL TECHNIQUES - II					F	Periods: '	12				
Thermoanalytic	cal methods – principle , instrum	nentation and	applica	ations	of Thermo	ogravimetr	ic analys	sis				
(TGA),Different	tial Thermal analysis (DTA), Differen	tial Scanning (Calorime	etry (DS	SC) – princi	ple and ap	oplicatins	of				
Thermometric 1	titration and amperometric titrations							604				
UNII-V	MACROMOLECULES					F	erioas:	12				
Macromolecule of polymer : \ addition and c polymers-polym	es – classification of polymers –molar n viscometry, osmometry, ultracentrifuga condensation polymerization – proper ner processing techniques.	nasses of polyn ation, light sc rties of polym	mers –m attering ers: glas	kinetic ss trans	of determin cs of polyn sition temp	nation of m nerization erature –	nolar mas :kinetics crystallin	es of ity CO5				
	us. ov i utoriai reriods:-	Fraction	Lai rento	Jus:-		i otal Perio	JU2.00					

×2

\$. \$.h

Text Books

- 1. B.R.Puri, L.R Sharma Madan S Pathania, Principles of Physical Chemistry, 2022, Vishal Publishing co, 48th edition.
- 2. Gupta M. C., 1993, Statistical Thermodynamics, Wiley Eastern limited, New Delhi.
- 3. Lee, Sears, Tercotte, 1973, Statistical Thermodynamics, Addision Wesley Publishing Co., London 1st Edition.
- 4. R.K.Prasad, Quantum Chemistry, New age international publishers, 4th revised edition, 2020.
- 5. P.K.Bhattacharya, Group Theory and its applications, Himalaya Publeshers. 3rd edition. 2014.

Reference Books

- 1. Antropov L., 1999, Theoretical electrochemistry, MIR Publications, New Delhi.
- 2. Glasstone S., 2002, An Introduction to Electrochemistry, Von Nostrand Co. Inc., Toronto.
- 3. Kuriakose J. C., Rajaram, J. 1999, Thermodynamics, III edition, Shobanlal Nagin Chand, New Delhi, India.
- H.W. Hanna, 1993, Quantum Mechanics in Chemistry-Benjamin –CummizaLondon Publishing Company, New Delhi, India.

5. Chandra A. K., 1988, Introductory Quantum Chemistry, 3rd edition, Tata McGraw-Hill Publishing Co, New Delhi, India Web References

1.https://www.mlsu.ac.in/econtents/2454_macromolecules.pdf

2.https://www.etsu.edu/uschool/faculty/tadlockd/documents/apbio_chp_5_detaillectout.pdf

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

Assessment		Cont	tinuous Ass	End Semester	Total		
	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	.0	5	5	5	75	100

S.A.h

Department	Chemistry	Programme	: M.Sc.	Chemis	try					
Semester	Fourth	Course Cat	egory C	Code: DS	E *End	Semester	Exam Type	: TE		
Course Code	A23PCHE410	Periods/We	ek		Credit	M	aximum Ma	rks		
		L	Т	Р	С	CAM	ESE	ТМ		
Course Name	PHARMACEUTICAL CHEMISTRY	4	-	-	4	25	75	100		
Prerequisite	Basic Knowledge studied in the UG Le	vel								
	To study the chemistry of bioreg	gulatory drug	S							
Course	To understand the therapeutic u	uses of drugs	contair	ning hete	rocycles.					
Objectives	To identify the common disease	es and their tr	eatmen	nts emplo	yed.					
	 To classify drugs based on their 	r biological, c	hemica	l charact	eristics.					
	To apply the concept of chemica	al reactions i	n desigr	ning the	drugs.					
	On completion of the course, the stud	dents will be	able to	0		ВТ Марр	oing(Highest	: Level)		
Course	CO1 Recall the chemistry of bioregula	atory drugs					К3			
Outcome	CO2 Understand the therapeutic uses of drugs containing heterocycles. K3									
	CO3 Identify the common diseases an	nd their treatr	nents e	mployed	•		K3			
	CO4 Classify drugs based on their bio	ological, chen	nical ch	aracteris	tics.		K3			
	CO5 Apply the concept of chemical re	eactions in de	esigning	g the dru	gs.		K3			
UNIT-I	INTRODUCTION TO CHEMISTRY	OF DRUGS					Periods: 1	2		
systems and si	USTAINED RELEASE OF DRUGS CONTAINING HETEROCY	CLES					Periods: 1	2		
Structures and thiazole: nirida seratonine, res	their therapeutic uses of drugs containir zole, thiabendazole and sulfathiazole - in erpine, ergotamine and indomethacin- qu	ng pyridine: r nidazole: azc iinoline: chino	nikethar mycin, ofon, ch	mide, iso metronic iloroquine	niazid, me lazole and e and prim	epyramine d clotrima: naquine.	e and niacin zole - indole	- ;: CO2		
UNIT-III Incoct borno di	COMMUN DISEASES AND THEIR		Trootm	ont ucin	a druge	wator bor	Perioas: 1	2		
Treatment usin nervous system	ng drugs-Digestive disorders - treatmen n - treatment - other common diseases- tr	nt- diseases reatment.	of res	spiratory	system-	treatment	-diseases c	of CO3		
UNIT-IV	NAME REACTIONS IN DRUG SYN	THESIS					Periods: 1	2		
Mechanism a Clemmensen F	and uses of Beckmann rearrangement Reduction-Birch Reduction-Darzen's react	t- Fries rea tion-Reiley R	rrangen eaction	nent- So -Mannich	chmidt rean reaction-	actionMP' Michael r	V reduction eaction	- CO4		
UNIT-V	BIOREGULATORY DRUGS				Periods:	: 12				
Cardiovascular Diabetes and I diabetes - Insu antimetabolites	r drugs - Cardiac glycosides - anti arrhy Hypoglycaemic drugs - two types of diak ulin -Hypoglycaemic agents. Anticonvulsa s.	/thmic drugs betes - Diabo ants -Cancei	-antihy etes ins and a	/pertensi sipidus a ntineopla	ve agents nd diabete astic drugs	e - antiang es mellitu s - Comm	ginal agents s -Control c non causes	, If - CO5		
Lecture Period	ds: 60 Tutorial Periods:-	Practic	al Peric	ods:-	•	Total Per	iods:60	!		
Text Books					i					
1. Clayde	en J, Greeves N and Warren S, Organic C	hemistry, 2 r	nd Editio	on, Oxfoi	d Univers	ity Press,	New York, 2	2012		

- 2. Gosh J, Text Book of Pharmaceutical Chemistry, 3rd Edition, S. Chand & Chand Publications, New Delhi, 1997.
- 3. George M and Joseph L, Text Book of Pharmaceutical Chemistry, Viva Books, New Delhi, 2009

S.S.h

Reference Books

- 1. Srivastava, S K, A Complete Text Book of Medical Pharmacology, Volume I, 2nd Edition, Avichal Publishing Company, Kolkatta, 2012.
- 2. Srivastava, S K, A Complete Text Book of Medical Pharmacology, Volume II, 2nd Edition, Avichal Publishing Company, Kolkatta, 2012.
- 3. Deb A C, Fundamentals of Biochemistry, New Central Book Agency, Calcutta, 1994.
- 4. Satake M and Mido Y, Chemistry for Health Science, Discovery Publishing House, New Delhi, 2003.
- 5. Kar A, Medicinal Chemistry, Wiley Easterns Limited, New Delhi, 1993

Web References

1.https://tech.chemistrydocs.com/Books/Medicinal/Chemistry-of-Drugs-by-David-E-Newton.pdf 2.https://www.chem.uzh.ch/zerbe/MedChem/MedChem1 Intro.pdf

COs/POs/PSOs Mapping

COs		Progra	m Outcome	es (POs)		Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	
3	3	2	3	3	2	3	3	3	
4	2	3	2	1	2	2	3	2	
5	3	3	3	3	3	3	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

Assessment		Cont	tinuous Ass	End Semester	Total		
	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	10		5	5	5	75	100

S. Ait

Department	Chemistry	Programme: M.Sc. (Chemistry									
Semester	Fourth	Course Category Co	ode: DSE *En	d Semester E	Exam Type:	TE						
Course Code	A23PCHE411	Periods/Week	Cred	it Max	kimum Mar	ks						
Course Name	INORGANIC CHEMISTRY-IV	4 -	P C - 4	CAM 25	ESE 75	1M 100						
Prerequisite	Basic Knowledge studied in the UG Le	evel										
•	To know about Applications of L	JV, Visible, IR and R	aman Spectroso	сору								
Course	To improve the know on Applica	ations of NMR, NQR a	and Mossebaue	er Spectrosco	ру							
Objectives	To gain information about ESR	and Photoelectron sp	ectroscopy									
	• To understand about AAS, AES	S, AFS, ICP GLC and	HPLC									
	To develop the knowledge on I and Amperometry	Laser Raman spectro	oscopy,Magne	tic susceptib	ility, Polaro	graphy						
	On completion of the course, the stud	dents will be able to		BT Mappi	ng(Highest	Level)						
	CO1 Know about Applications of UV,	Visible, IR and Rama	an Spectroscopy	/	K3							
Course Outcome	CO2 Improve the know on Application	ons of NMR, NQR a	and Mossebau	er	K3							
	CO3 Gain information about ESR and	roscopy		K3								
	CO4 Understand about AAS, AES , AFS, ICP GLC and HPLC											
	CO5 Develop the knowledge on La	CO5 Develop the knowledge on Laser Raman spectroscopy, Magnetic K3										
UNIT-I	INORGANIC SPECTROSCOPY - I	Amperometry			Periods	: 12						
Applications to	inorganic systems of the following: u	ıltra violet, visible, ir	nfra-red and Ra	aman spectr	a of metal							
complexes, or isomerism.	ganometallic and simple inorganic com	npounds with specia	l reference to	coordination	sites and	CO1						
UNIT-II	INORGANIC SPECTROSCOPY - II				Periods	: 12						
Application to	Inorganic systems of the followings NMF	R, NQR and Mosseba	auer spectra - N	MR of 31P,	19F, NMR							
shift reagents.	NQR - Nitrosyl compounds. Mossebauer	spectra of Fe and Sn	systems.			CO2						
UNIT-III	INORGANIC SPECTROSCOPY - II	II			Periods	: 12						
ESR Introducti	ion - Zeeman equation, g-value, nuclea	ar hyperfine splitting,	interpretation of	of the spectr	um, simple							
carbon centere	ed free radicals. Anisotropy - g-value and	hyperfine splitting co	nstant. McConn	ell's equation	n, Kramer's	CO3						
spectroscopy (UV and X-ray) - photo electron spectra	- Koopman's theorer	n fine structure	in PFS che	emical shift							
and correlation	with electronic charges.											
UNIT-IV	INSTRUMENTAL ANALYSIS - I				Periods	: 12						
AAS, AES and	AFS – Principle, instrumentation and app	olications, advantages	s of AAS, interfe	rences; GLC	and HPLC							
 Principle, in introduction, in: 	strumentation and working, types of d strumentation, interferences and applicati	letectors; Inductively ions.	coupled plasm	na spectrosc	opy (ICP)-	CO4						
UNIT-V	INSTRUMENTAL ANALYSIS - II				Periods	: 12						
Laser Raman	spectroscopy - principle, interfaces, ad	lvantages and applic	ations. Magnet	ic susceptibi	lity and its							
determination instrumentatior	- Guoy method, Faraday method and n and applications.	applications. Polaro	graphy and Ar	nperometry	- Principle,	CO5						
Lecture Period	ds: 60 Tutorial Periods:-	Practical Period	ds:-	Total Peric	ods:60	<u> </u>						
127			-	s 8 _	h							
- >			0	D.Dr	0,							

\$. \$. h

Text Books

- 1. A. Earnshaw, Introduction to Magneto Chemistry, Academic Press, London, (1968).
- 2. C.N.R. Rao, I.R. Ferraro, Spectroscopy in Inorganic Chemistry, Vol. I and Vol. II, Academic Press, (1970).

3. D. A. Skoog and D.M.West, Principles of Instrumental Methods of Analysis, Saunder's College Publ. III Edition, (1985).

Reference Books

1D.N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Techniques, Universities Press (India) Ltd., Hyderabad (2001).

2.FA Cotton and G Wilkinson, Advanced Inorganic Chemistry, John Wiley and Sons, V Edition (1988).

3 AI Vogel, Text book of Qualitative Analysis - IV Edition (1985).

4. C. N. Banwell and E.M. Mc Cash, Fundamentals of Molecular Spectroscopy, IV edition, Tata McGraw Hill, New Delhi (1994)

Web References

1.https://www.yorku.ca/jilchen/files/Chem%203031_spectroscopy.pdf 2.https://www.iau.edu.sa/sites/default/files/inorganic_spectroscopy_-tyf_gyr_dwy.pdf

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	2	2	2	2	2	2	3	3
3	3	3	3	3	2	3	2	2
4	2	3	2	1	3	2	3	2
5	2	2	3	3	3	3	2	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Cont	tinuous Ass	End Semester	Total			
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks	
Marks	10		5	5	5	75	100	

A.A.h

Department	Chem	nistry	Programm	e: M.Sc.	Chemis	stry						
Semester	Fourt	h	Course Category Code: DSE *End Semester Exam Type: TE									
Course Code	Δ23P	CHF412	Periods/W	eek		Credit	Maximum Marks					
			L	Т	Р	С	CAM	ESE	TM			
Course Name	STER	REOCHEMISTRY	4	-	-	4	25	75	100			
Prerequisite	Basic Knowledge studied in the UG Level											
Course	To assign R or S configuration for the chiral centres of organic compounds											
Objectives	To comprehend the techniques in the determination of reaction mechanisms of elimination reactions											
	•	To understand the methods of resolution to form chiral compounds										
	•	To correlate and appreciate the	e Fischer, Ne	wmann a	and Sav	vhorse forr	nulae of or	ganic comp	oounds			
	•	• To design asymmetric synthesis using chiral auxillaries, chiral reagents and chiral catalysts.										
	On co	mpletion of the course, the stu	BT Mappi	3T Mapping(Highest Level)								
Course	CO1	Find the configuration and stereochemical aspects of organ		K3								
Outcome	CO2 Find conformational isomers and justify conformational analysis of cyclic and acyclic systems.								K3			
	CO3		K3									
	CO4	Use the absolute configuration a	K3									
	CO5	Assess the importance of prote	К3									
UNIT-I	CONFIGURATION							Periods	: 12			
Double bonds centres - axia atropisomerism enantiotopic lig	- cyclic Il chiral n - heli ands ar	systems - tetrahedral atoms - w ity - biphenyls, allenes, spiran city and chirality - topocity an nd faces - diastereotopic ligands	vith multiple les - assigr ld prostereo and faces - c	stereoge hing R/S isomeri configura	nic cen - chira sm - te tion at p	tres - othe ality and s opocity of prochiral ce	r types of symmetry ligands a nters.	stereogenic concept o nd faces	c f CO1			
UNIT-II	RESOLUTION							Periods	: 12			
Absolute config	guration	- enantiomers - diastereomers -	polarimeter	- resolut	ion - me	ethods - ch	iral shift re	agents and	d			
chiral solvating	agents	- separation of enantiomers - en	zymatic reso	lution an	id disym	metrizatio	n - the ano	meric effec	;t			
in cyclic compo	ounds.								CO2			
UNIT-III CONFORMATIONAL ANALYSIS								Periods	: 12			
Conformationa conformational six- membered carbons stereo	l isomer isomer ring sys centers	rism in ethane and n-butane - pro ism in cycloalkanes - Baeyer's str stems and their optical activity - c (N, S and P).	jection form rain theory- i conformation	ula - Fisc mono and s of deca	her, Ne d disubs alin - chi	wmann an stituted thre rality in mo	d Sawhorso ee-, four-, fi lecules wit	e - ve- and h non-	СОЗ			

UNIT-IV STEREOSELECTIVITY

Chemoselectivity: Chemo-, regio-, and stereoselectivity - reactivity of carbonyl groups towards nucleophiles selectivity of hydrides in reduction - selectivity in oxidations - Protecting groups - hydroxyl, amino, carbonyl and carboxylic acid protecting groups.

Regioselectivity: Regioselectivity in electrophilic and nucleophilic aromatic substitution, regioselectivity in elimination reactions, electrophilic attack on alkenes, regioselectivity in radical reactions, nucleophilic attack on allylic compounds, electrophilic attack on conjugated dienes and conjugate addition.

S.A.h

Periods: 12

M.Sc Chemistry
UNIT-V	ASYMMETRIC	C SYNTHESIS			Periods: 12	2
Chiral auxili catalysis - a Prochirality,	aries: Alkylation of asymmteric hydroge Cram's rule and che	chiral enolates - enanti nation - asymmetric epo elation effect, diastereose	omeric excess - optical pur oxidation - asymmetric dihyo electivity in aldol reaction, dia	rity - chiral reagents droxylation. Diasterec astereoselective epox	and chiral pselectivity: idation.	205
Lecture Per	riods: 60	Tutorial Periods:-	Practical Periods:-	Total Perio	ds:60	
Text Books						
1. 2.	Carey, F.A., Sund mechanisms, (5th E Clayden, J., Greev Press, New York,.	dberg, R. J. (2007). A d.). Springer (India) Pvt I es, N., & Warren, S. (2)	dvanced Organic Chemist Ltd, New Delhi 012). Organic Chemistry, (2 udvanced Organic Chemist	ry, Part A: Structur 2nd Ed.). Oxford Uni	e and versity	
э.	Mechanisms, (5th E	d.). Springer (India) Pvt I	Ltd, New Delhi.	iry, Fait D. Structur	e anu	
Reference I	Books					
1.	Bruckner, R. (20 SpringerVerlag, Be	910). Organic Mechani erlin, Heidelberg.	sms - Reactions, Stereo	chemistry and Syn	thesis,	
2.	2. Gould, E.S. (198 New York.	59). Mechanism and Stru	cture in Organic Chemistry,	Holt-Reinhart and W	inston,	
3.	Eliel, E.L. (1998). S New Delhi.	Stereochemistry of Carbo	on Compounds, Tata-McGra	w Hill Publishing Cor	npany,	
4.	4. Nasipuri, D. (19 Publishers, New D	96). Stereochemistry of elhi.	Carbon Compounds, (2nd)	Ed.). New-Age Intern	ational	
Web Refere	ences					
1. h 2. h	ttps://www.youtube. ttps://www.youtube.	com/watch?v=B23i9_jC5 com/watch?v=fLXyKLVd6	Т8 6Нс			

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	2	2	2	2	2	2	3	3
3	3	3	3	3	2	3	2	2
4	2	3	2	1	3	2	3	2
5	2	2	3	3	3	3	2	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

Assessment		Cont	tinuous Ass	End Semester	Total		
	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	.0	5	5	5	75	100

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

S.S.h

Department	Chemistry	Programme	e: M.Sc	. Chemis	try						
Semester	Fourth	Course Cat	egory (Code: DS	C *End S	emester	Exam Typ	e: PE			
Course Code	A23PCHL407	Periods/We	ek –		Credit	Ma	aximum Ma	arks			
Course Name	INDUSTRIAL CHEMISTRY LAB	L	-	Р 4	2	50 CAM	ESE 50	1M 100			
Prerequisite	Basic Knowledge studied in the UG Le	vel			_						
	To understand and develop the	practical exp	erience	on cond	uctometric	experime	nts				
Course Objectives	To learn practical knowledge on	potentiometr	ric expe	riments							
	To understand the practical kno	wledge on Pl	H metry								
	On completion of the course, the stud	dents will be	able to)		BT	Mapping (Level)	(Highest)			
Course	CO1 Gain knowledge on Conductor	netric titration					K3				
Outcome	CO2 Develop skill on Verifying De B	ye - Huckel- C	nsagar	equatio	า		K3				
	O3 Improve practical experience I on Verifying the Ostwald's Dilution law K3										
	CO4 Understand the potentiometric	titration					K3				
	CO5 Learn the determination of ionis	sation constai	nt using	pH met	er		K3				
List of Experi	ments										
1.Estimation o	f total hardness of water by EDTA metho	d.									
2.Determinatio	on of dissolved oxygen in water										
3.Estimation o	f alkalinity of of water by mixed indicator	method									
4.Estimation o	f chloride in water by Mohr's method										
5.Estimation o	f available chlorine in bleaching powder.										
6.Determinatic	on of CaO in cement solution.										
7.Estimation o	f molecular weight and degree of polyme	risation using	viscom	netry.							
8.Estimation o	f sodium in water by flame photometry.										
9.Estimation o	f ferric iron by spectrophotometry										
10.Estimation	of iron by colorimetry.										
CHROMATO	GRAPHIC SEPARATIONS										
1. Column chr	omatography - Separation of anthracene	and picric aci	d from	anthrace	ne picrate.						
2. Thin layer o	chromatography - Separation of green lea	af pigments.									
3. Paper chror	natography - Identification of amino acid.										
Lecture Perio	ds: - Tutorial Periods:-	Practic	al Peri	ods:-30	Т	otal Peri	ods:30				
Reference Bo											

\$. \$.h

1. Lab Manual, Department of Chemistry, SMVEC (Autonomous), Madagaipattui.

2. Venkateswaran V, Veeraswamy R and Kulandaivelu A R., Basic Principles of Practical Chemistry, 2nd Edition, Sultan Chand & sons, New Delhi, 1997.

3. Daniels, Mathews F, Howard J and John Warren W, Experimental Physical Chemistry, 7th Edition, Mc Graw Hill, New York, 1970.

4. Findlay A, Practical Physical Chemistry, 7th Edition, Longman, London, 1959.

Web References

- 1. http://ndl.ethernet.edu.et/bitstream/123456789/78703/1/Industrial%20Chemistry%20II%20module%20%20Chem451 %20fina%28Submitted%29-1.pdf
- 2. https://diposit.ub.edu/dspace/bitstream/2445/180999/1/Applied%20Chemistry%20II%20Laboratory%20Handbook.pd f

COs/POs/PSOs Mapping

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3
3	3	2	3	3	2	3	3	3
4	2	3	2	1	2	2	3	2
5	3	3	3	3	3	3	3	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

	Continuc	ous Asses	End Semester	Total			
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks	
Marks	15	15	10	10	50	100	

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

S.A.h

Department	Chem	istry	Programm	e: M.Sc.	Chemistry					
Semester	Fourtl	ı	Course Ca	tegory C	Code: SEC	*End	Semester I	Exam Typ	e:	
Course Code	A23P0	CHS402	Perio	ods/Wee	k	Credit	Ma	ximum Ma	arks	
			L	Т	Р	С	CAM	ESE	TM	
Course Name	HEAL	TH SCIENCE	2	-	-	2	100	0	100	
Prerequisite	Basic	Knowledge studied in the UG Le	evel		I			L		
Course	•	To create awareness about the activity	importance	of chiral	lity for orgai	nic synt	hesis and f	or biologic	al	
Objectives	•	Apply the important principles of	of stereocher	nistry ar	nd understa	nd then	n.			
	On cor	npletion of the course, the stu	dents will b	e able t	0		BT Mappir	ng(Highes	t Level)	
	CO1	Understand the basic concept c	of asymmetri	c Synthe	esis		K3			
	CO2	CO2 Able to synthesize on chiral substrate K3								
Course	CO3	Use chiral substrate to synthesiz	ze asymmetr	ic comp	ounds		K3			
Outcome	CO4 Utilysze chiral auxiliary to synthesize asymmetric compounds K3									
	CO5	handle chiral catalyst to synthes	ize asymme	tric com	pounds		K3			
UNIT-I	UNIT-I	HEALTH						Periods:	6	
Fe, Zn, Se, Mo)	•						Deriede:	C01	
	DRUG			- 11 - 12		0		Periods:	b	
Drugs - classifi antipyretics, an antiseptics and	cation of itirheuma I disinfec	drugs - drugs acting on CNS - g atics, analgesics, anticonvulsants tants - cardiovascular agents - a	general anae s and antitus inti cancer di	sthetics, sives - c ugs - ac	, nypnotics chemothera lverse effec	& sedat peutic o ts of dr	drugs - anti ugs.	biotics,	CO2	
UNIT-III	BODY	FLUIDS						Periods:	6	
composition of respiration - ox electrolyte bala	blood- b ygen an ince - Na	lood volume, blood groups, func d carbon dioxide transport in bloo a/K pump.	tions of bloo od - haemog	d, blood lobin -m	pressure, a lyoglobin - d	anaemia compos	a, blood sug ition of urin	gar - e -	CO3	
UNIT-IV	ENZY	MES AND HORMONES						Periods:	6	
Enzymes - type stomach, intest	es and th tine and	neir roles in biochemical reactions pancreas .	s - hormone:	s - types	and functio	ons - dig	gestion in n	nouth,	CO4	
UNIT-V	СОММ	ON AND VITAMIN DEFICIENC	Y DISEASE	5				Periods:	6	
Jaundice, canc blindness, Cov	er, kidne id-19 - c	ey stone - typhoid, dengue, ulcer auses - symptoms - diagnosis - v	, goiter, diab vaccines/trea	etes, ric atment.	kets, scurvy	/, beribe	eri, pellagra	a, night	CO5	
Lecture Period	ds: 30	Tutorial Periods:-	Practica	al Perio	ds:-	Т	otal Period	ds:30	I	
Text Books						L				
52	/					1	2 2 -	h		
~			Channa interna			Ø	P.Q.	0.		

\$. \$. h

M.Sc Chemistry

- 1. Ramani A V, Food Chemistry, MJP Publishers, Chennai, 2009.
- 2. Ghosh, J A, Text book of Pharmaceutical Chemistry, S. Chand and Co. Ltd, 1999.
- 3. Comprehensive Asymmetric Catalysis (Jacobsen, E. N, Pfaltz, A. Yamamoto, H. Eds.) Springer 2000.

Reference Books

- 1. Ashutosh Kar, Medicinal Chemistry, Wiley Easterns Limited, New Delhi, 1993.
- 2. Deb A C, Fundamentals of Biochemistry, New Central Book Agency, Calcutta, 1994.
- 3. Parul R. Sheth, Chemicals of Life, National Institute of Science Communication (CSIR), 2000.
- 4. Satake M and Mido Y, Chemistry for Health Science, Discovery Publishing, House, New Delhi, 2003

Web References

1.https://www.academia.edu/6875053/LECTURE_NOTES_For_Health_Science_Students 2. https://www.academia.edu/9183720/LECTURE_NOTES_For_Health_Science_Students_Medical_Biochemistry

COs/POs/PSOs Mapping

COs	Program	Outcomes	(POs)	Program Specific Outcomes				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	3	3	3	3	3
2	2	2	2	2	2	2	3	3
3	3	3	3	3	2	3	2	2
4	2	3	2	1	3	2	3	2
5	2	2	3	3	3	3	2	3

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

Assessment	Contir	nuous A	ssessment		End Semester	Total	
	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	10		5	5	5	75	100

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

S.S.h

Department	Chemistry	Programme: M.Sc. Chemistry								
Semester	Fourth	Course Category Code: DSE *End Sem						Semester Exam Type: LE		
Course Code	A23PCHP401	Periods / Week				Credit		Maximum Marks		
		L	Т	Р	C		CAM	ESE	тм	
Course Name	Project Work	0	0	10	6	5	40	60	100	

- As part of our curriculum requirement, our students have to do Project work in the college or chemical company to learn various chemical synthesis process, characterization process and explore the applications of the compounds to solve various problems.
- Based on the student's interest the topic shall be chosen by the students
- Moreover the entire process to be monitored and guided by the faculty. The periodical assessment shall be done to evaluate the performance of the students.

Evaluation Method

	Cont	inuous As	End Semester	Total		
Assessment	Review 1	Review 2	Review 3	Attendance	Examination (ESE) Marks	Marks
Marks	10	10	10	10	60	100

S.A.h