

SCHOOL OF ARTS AND SCIENCE

MASTER OF SCIENCE IN PHYSICS

(R-2023) CURRICULUM AND SYLLABI

7.8-0-

1

SI.No	Course Category	Total Credits
1	Discipline Specific Core Courses (DSC)	64
2	Discipline Specific Elective Courses (DSE)	16
3	Skill Enhancement Courses (SEC)	08
	Total	88

STRUCTURE FOR POST GRADUATE PROGRAMME

	SCHEME OF CREDIT DISTRIBUTION – SUMMARY										
SI.No	Course Category	(Credi Sem	Total							
		I	=	≡	IV	Credits					
1	Discipline Specific Core Courses (DSC)	16	16	16	16	64					
2	Discipline Specific Elective Courses (DSE)	4	4	4	4	16					
3	Skill Enhancement Courses (SEC)	2	2	2	2	08					
	Total	22	22	22	22	88					

* EEC will not be included for the computation of "total of credits" as well as "CGPA"

7.8-0-

	SEMESTER – I												
SI.		0	0.1	F	Perio	ds	Quellin	м	ax. Marl	s			
No.	Course Code	Course little	Category	L	т	Р	Credits	САМ	ESM	Total			
Theo	ry				•								
1	A23PPHT101	Classical Mechanics	DSC	4	0	0	4	25	75	100			
2	A23PPHT102	Mathematical Physics I	DSC	4	0	0	4	25	75	100			
3	A23PPHT103	Electromagnetic Theory	DSC	4	0	0	4	25	75	100			
4	A23PPHE10X	Discipline Specific Elective I*	DSE	4	0	0	4	25	75	100			
Prac	tical												
5	A23PPHL101	General Practical-I	DSC	0	0	4	2	50	50	100			
6	A23PPHL102	Electronics Practical-I	DSC	0	0	4	2	50	50	100			
Skill	Enhancement Co	ourse											
7	A23PPHS101	Professional Skills	SEC	2	0	0	2	100	0	100			
			First Se	mes	ster T	otal	22	300	400	700			

7.8-0-

X2

	SEMESTER – II												
SI.	Course Code		Cotogony	Periods			Cradita	Max. Marks					
No.	Course Code	Course The	Category	L	т	Ρ	Credits	САМ	ESM	Total			
Theo	Theory												
1	A23PPHT204	Statistical Mechanics	DSC	4	0	0	4	25	75	100			
2	A23PPHT205	Mathematical Physics II	DSC	4	0	0	4	25	75	100			
3	A23PPHT206	Quantum Mechanics-I	DSC	4	0	0	4	25	75	100			
4	A23PPHE20X	Discipline Specific Elective II	DSE	4	0	0	4	25	75	100			
Prac	tical												
5	A23PPHL203	General Practical-II	DSC	0	0	4	2	50	50	100			
6	A23PPHL204	Electronics Practical-II	DSC	0	0	4	2	50	50	100			
Skill	Enhancement Co	burse											
7	A23PMAS201	Quantitative Reasoning and Research AptitudeSEC200					2	100	0	100			
		Se	econd Seme	este	r To	otal	22	300	400	700			

7.8-0-

X2

	SEMESTER – III												
SI.	Course Code		Cataman	P	erio	ds	Credite	M	ax. Mark	s			
No.	Course Code	Course little	Category	L	т	Ρ	Credits	САМ	ESM	Total			
Theory													
1	A23PPHT307	Molecular Physics	DSC			0	4	25	75	100			
2	A23PPHT308	Quantum Mechanics - II	DSC	4	0	0	4	25	75	100			
3	A23PPHT309	Condensed Matter Physics	DSC	4	0	0	4	25	75	100			
4	A23PPHE30X	Discipline Specific Elective II	DSE	4	0	0	4	25	75	100			
Prac	tical												
5	A23PPHL306	Microprocessor Practical-I	DSC	0	0	4	2	50	50	100			
Skill	Enhancement Co	ourse											
6	A23PPHS302	Advance Research Methodology in Physics	SEC	2	0	0	2	100	0	100			
Inter	nship												
7	A23PPHN301	Internship / In-plant training	2	40	60	100							
			otal	22	340	460	800						

7.8-0-

X2

	SEMESTER – IV												
SI.	Course Code		Catagory	Periods			Credito	м	ax. Mar	ks			
No.			Category	L	т	Ρ	Credits	САМ	ESM	Total			
Theory													
1	A23PPHT410	Nuclear & Particle Physics	DSC			0	4	25	75	100			
2	A23PPHT411	Materials Science	DSC			0	4	25	75	100			
3	A23PPHE40X	Discipline Specific Elective II	DSE	4	0	0	4	25	75	100			
Prac	tical												
4	A23PPHL407	Microprocessor Practical-II	DSC	0	0	4	2	50	50	100			
Proje	ect												
5	A23PPHP401	Project Work and Dissertation	DSC	0	0	12	6	40	60	100			
Skill	Enhancement Co	ourse											
6	A23PPHS403	Non-Destructive Testing	SEC	2	0	0	2	100	0	100			
			Fourth Ser	nes	ter 1	otal	22	265	335	600			

7.8-0-

X2

Disciplin	ne Specific Electiv	Discipline Specific Elective – I (Offered in Semester I)									
SI. No.	Course Code	Course Title									
1	A23PPHE101	Digital Electronics Principles									
2	A23PPHE102	Instrumentation									
3	A23PPHE103	Physics of Nano materials									
Discipline Specific Elective – II (Offered in Semester II)											
1 A23PPHE204 Atmospheric Physics											
2	2 A23PPHE205 Nonlinear Optics										
3 A23PPHE206 Microprocessor and Microcontroller											
Disciplin	ne Specific Electiv	re – III (Offered in Semester III)									
1	A23PPHE307	Communication Electronics									
2	A23PPHE308	Molecular Physics									
3	A23PPHE309	Biomedical Instrumentation									
Disciplin	ne Specific Electiv	re – IV (Offered in Semester IV)									
SI. No.	Course Code	Course Title									
1	A23PPHE410	Research Methodology, Computation Methods & Programming									
2	A23PPHE411	Astronomy & Astrophysics									
3	A23PPHE412	Non-Destructive Testing									

Annexure – I DISCIPLINE SPECIFIC ELECTIVE COURSES**

7.8-0-

X2

7

Department	PHY	SICS	Program	me: N	1. Sc.F	hysics						
Semester	I		Course Ca	tegor	y Code	e: DSC	End Sem	ester Ex	am Type: TE			
Course Codo	۵23	PPHT101	Peri	ods/V	Veek	Credit		Maxim	um Marks			
	~23		L	T	P	C	CAM	ESE	TM			
Course Name	CL	ASSICAL MECHANICS	4	0	0	4	25	75	100			
Prerequisite	comf force	ortable with Newton's laws and with b and time	basic physic	s conc	epts sı	uch as m	ass, mome	ents of in	ertia, length,			
	To kn	ow the classical mechanical metho	ds and the	ories.								
	Tog	et knowledge in central force fie	eld motio	n								
Course	To s	olve the Equation of Canonical	Transform	natior	ıs							
Objectives	To u	inderstand the small oscillations	of molec	ules.								
	To s	olve the equation of motion usir	ng Lagran	gian,	Ham	ilton an	d Hamil	ton Jaco	bi equations			
Course Outcomes BT M Outcomes Highe												
CO1 Learn about the dynamics of system of particles using Hamiltonian, Lagrangian and Jacobi.												
	CO2 Understand the planetary motion using Kepler's law											
	CO3 Develop the equation of canonical Transformations											
	CO4 Solve small oscillations using Legendre transformations and Hamiltonian.											
	CO5 Solve harmonic oscillator problem using canonical-transformation and Hamiltonian Jacobi											
UNIT - I	UNIT-	I: LAGRANGIAN AND HAMIL	TONIAN	мет	HOD	S			Periods: 12			
Generalized c Lagrange's equ Hamiltonian e form Variation	oordin uation quation al prin	ates–D'Alembert's principle–Lag of motion–Linear harmonic oscilla n of motion–Physical significance ciple–Principle of least action – Si	rangian enter tor and sire of the Ha mple appli	quatio nple p amilto catior	n of bendul bnian - ns.	motion um. Cy – Hami	–Applica clic co-or ltonian eo	tions of dinates- quations	C01			
UNIT - II	CENT	RAL FIELD MOTION							Periods: 12			
Motion under force problem orbit in a cent law of planetar	a centr to the ral fiel y moti	al force – General features of centr equivalent one body problem– Equ d- condition for closed orbit (Ber on-scattering in a central force field	al force m ation of a trand's the d.	otion- motio	Redu n in a)–The	ction of central virial t	field. Equ heorem—l	y central lation of Kepler's	CO2			
UNIT - III	CANO	NICAL TRANSFORMATIONS							Periods: 12			
The equation of Harmonic Osc Equation of mo	of Can illator- otion ii	onical Transformations – Example – Lagrange and Poisson bracket – 1 Poisson bracket notation- Liouvil	es of Cano Properties le's theore	nical and i m.	Transi invaria	formation ance of	ons – Pro Poisson	blems – bracket-	CO3			
UNIT - IV	SMALL OSCILLATIONS											
Formulation of of free vibrati macroscopic a	f the P ons an pplicat	roblem-Eigen value equation and t d normal Coordinates–Free vibrat ions.	he princip ions of a	le axe linear	es Trai triato	nsforma omic mo	tion–Frec blecule ar	quencies nd some	CO4			

7.8-0-

20

8

UNIT - V	HAMILTON- JACOBI THEORY	Periods: 12
Hamilton-Jac –Jacobi equat Oscillator pro	obi equation– Applications: Harmonic Oscillator and Kepler's Problem – The Hamilton ion for Hamilton's characteristic's function–Action and Angle variables–Harmonic blem using action and angle variables–Kepler's problem in action-Angle variable.	CO5

Lecture Periods: 60	Tutorial Periods: 0	Practical Periods: -	Total Periods : 60
Text Books			
 H. Goldstein, Classic S.N. Biswas, Classic J.L. Synge and B.A (cal Mechanics, Pearson Educ al Mechanics, Books and All Griffith, Principles of Classic	ation, Asia, New Delhi, 3 rd Edition lied Ltd., Kolkata, 2 nd Edition, 199 cal Mechanics, Mc. Graw-Hill, Ne	n, 2002. 98. w York, 2 nd Edition, 1949.
Reference Books			
 L.D. Landau and E.M T.W.B. Kibble, Class N.C. Rana and P.S. J 	 Lifshitz, Mechanics, Pergo sical Mechanics, Imperial Co uog, Classical Mechanics, M 	omon Press, Oxford, 5 th Edition, 1 th Illege Press, 5 th Edition, 2004. Ic. Graw-Hill, New York, 2 nd Edit	969. ion, 1973.
Web References			
1. https://www.youtube 2. https://www.khanaca 3. https://www.askiitian	c.com/playlist?list=PLERGeJ idemy.org/science/physics is.com/iit-jee-physics/mechan	GfknBR3pXCPIV3bgb_qHCSNC	Dd Bf lite.aspx

606		Progra	m Outcome	Program Specific Outcomes (PSOs)				
COS	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

Evaluation Method

		Continu	ous Asses	sment Marks (CAM)	End Semester	
Assessment	CAT 1	CAT 2	CAT 3	Assignment* Attendance Examination Marks		Examination (ESE) Marks	Total Marks
Marks	5	5	5	5	5	75	100

7.8-0-

X2

Department	PHY	SICS Programme: M. Sc. Physics										
Semester	I		Course C	Catego	ry Coo	de: DSC	End Seme	ester Exa	am Type: TE			
Course Code	A23F	PHT102	Peri	ods/V	Veek	Credit		Maxim	um Marks			
	/.201		L	Т	Р	C	CAM	ESE	TM			
Course Name	e MA'	FHEMATICAL PHYSICS - I	4	0	0	4	25	75	100			
Prerequisite	need	l a superior high-level undergradu	ate educat	ion in	physic	cs studie	ed basic al	gebra				
	To de	velop knowledge in mathematical	physics an	d its a	pplica	tions.						
_	To de	velop expertise in mathematical te	chniques re	equire	d in pl	nysics.						
Course	To en	hance problem solving skills.										
Objectives	To un	derstand the Group theory and its	application	s.								
	To en	able students to formulate, interpre	et and draw	infer	ences	from m	athematica	al soluti	ons.			
Course Outcomes	On co	mpletion of the course, the stude	nts will be	able t	0				BT Mapping (Highest Level)			
	CO1	have clear idea about vector calc	culus and m	natrice	s.				К3			
	CO2	Develop knowledge in mathemat	ical physic	s and	its app	olication	ıs.		К3			
	CO3	D3 Understand the use of complex variables for solving definite integral.										
	CO4	CO4 Understand the applications of group theory in all the branches of Physics problems.										
	CO5	Enable students to formulate, int solutions.	terpret and	draw	infere	ences fr	om mathe	matical	К3			
UNIT-I	VECT	OR CALCULUS							Periods: 12			
Definitions &	by Phys	rical significance of gradient	divergence	and	curl_	simnle	nrohlems	-vector				
identities- line	e. surfa	ce and volume integrals—simple pr	oblems-St	ateme	ent and	l proof	for Gauss'	's	CO1			
divergence the	eorem,	Stokes's theorem and Green's theorem	orem			* p1001 /		5				
UNIT - II	MATR	ICES							Periods: 12			
Types of Mat	rices-S	ymmetric and anti-symmetric-Her	mitian and	Skew	Hern	nitian- F	Rank of a	Matrix,				
Eigenvalue Ec	quations	s and their solutions-Theorems on	Matrices;	Diago	onalisa	tion and	d Diagona	lisation	CO2			
of different m	atrices	-Cayley-Hamilton's theorem- Sim	ple proble	ms.								
UNIT - III	COMP	PLEX VARIABLE							Periods: 12			
Functions of	comple	ex variable-Analytic functions-C	auchy- Ri	emanı	n equa	ations i	ntegration	in the				
Complex pla	ne–Cau	chy's theorem-Cauchy's integra	al formula	a-Tayl	or an	nd Lau	rent expa	nsions-	<u> </u>			
Singular Point	ts- Cau	chy's residue theorem-poles - eva	luation of	residu	es–eva	aluation	of definit	e	COS			
integrals.												
UNIT - IV	GROU	P THEORY							Periods: 12			
Definition-Su	bgroup	s-Cyclic groups and abelian grou	ips –Homo	morp	hism a	and isor	norphism	of				
groups– Class and irreducibl molecules).	e repres	mmetry operations and symmetry sentations–Character tables for sin	elements F	Repres	entatio pes ((ons of g C2v and	groups–Re C3v poin	ducible t group	CO4			

7.8-0-

UNIT - V	TENSOR	S			Periods: 12
Definition of Tensors – Su product – Qu Metric tensor	Tensors immation iotient rul s-Christoff	 Contravariant, covariant convention- Symmetry and e- Pseudo tensors, Levi-Ci fel symbols – Geodesics. 	and mixed tensors – addition a l Anti-symmetry Tensor – Contr ivita Symbol - Dual tensors, irr	nd subtraction of raction and direct educible tensors–	CO5
Lecture Perio	ds: 60	Tutorial Periods: 0	Practical Periods: -	Total Per	riods : 60
Text Books					
 SatyaPraka B.D. Gupta B.S. Rajpta 	sh, Mather a, Mathema ut, Mather	natical Physics, Sultan Cha atical Physics, Vikas Publisl matical Physics, Pragati P	nd & Sons, 6 th Edition 2014. hing House Pvt. Ltd, 4 th Edition 20 Prakashan, 20 th Edition, 2008.	010.	
Reference B	ooks				
 Charlie Ha L.A. Pipes Publications 0 P.K.Chatt 	rper, Intro and L.R. H Co., 3 rd Ed opadhyay	luction to Mathematical Phy Iavevill, Applied Mathemat ition, 2014. , Mathematical Physics, N	ysic, Prentice Hall of India Pvt. Lt ics for Engineers and Physicists, I New Age International Publicat	td, 6 th Edition, 1993 McGraw Hill tion, 1 st Edition, 1	3. 990.
Web Referer	nces				
1. http://www 2. http://web. 3. https://www	.math.pitt. math.ucsb. w.math.ust	edu/~sparling/14/20141540 edu/~jhateley/project/tensor .hk/~machas/differential-eq	/20141540vectorspacesapril28.pd r.pdf uations.pdf	f	

<u> </u>		Progra	m Outcome	Program Specific Outcomes (PSOs)				
COS	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

Evaluation Method

		Contir	nuous Asses	sment Marks (O	End Semester		
Assessment	CAT	CAT	CAT 2	Accignmont*	Attendance	Examination (ESE)	Total Marks
	1	2	CAT 5	Assignment	Attenuance	Marks	
Marks	5	5	5	5	5	75	100

7.8-0-

X2

Department	PHYS	PHYSICS Programme: M. Sc. Physics										
Semester	I		Course C	Catego	ry Co	de: DSC	End Sem	ester Exa	am Type: TE			
Course Code	A 23E		Per	iods/V	Veek	Credit		Maxim	um Marks			
Course Coue	AZJI		L	Т	P	С	CAM	ESE	TM			
Course Name	ELE	CTROMAGNETIC THEORY	4	0	0	4	25	75	100			
Prerequisite	Basic p	principles of electromagnetism and	d properti	es of e	lectro	omagnet	ic					
	To hav	e clear idea about Electrostatics										
	To be t	familiar with electromagnetic theo	ory									
Course	To unc	lerstand electromagnetic concepts										
Objectives	To app	ly these theory and concepts to so	lve the Ph	ysics p	proble	ems.						
	To unc	lerstand the nature of electric and	magnetic	fields a	and th	e intrica	te connec	ction bet	ween them			
Course Outcomes	On cor	npletion of the course, the studer	nts will be	able t	0				BT Mapping (Highest Level)			
	CO1	Learn the fundamentals of electro	ostatics.						КЗ			
	CO2 Acquire the knowledge about magnetostatics.											
	CO3 Gain knowledge about the Maxwell equation											
	CO4 Learn about electromagnetic waves.											
	CO5	Understand the Potentials formul	ations and	l field.					К3			
UNIT-I	ELCI	TROSTATICS							Periods: 12			
Gauss's Law-e equation-Lapla coordinates- Po Gauss law in d	electric ce equ plarizat	dipole-multipole expansion of ation in one independent variab ion -Field outside of a Dielectric r c.	electric fi le-solution nedium -7	elds- ns to The ele	Poiss Lapla	on's eq ce equa field ins	uation - tion in s ide a diel	Laplace spherical lectric-	C01			
UNIT - II 💦 🔥	IAGN	ETOSTATICS							Periods: 12			
Magnetic Field Application–An Magnetic Scala material –Magr	d–Mag npere' ar pote netic sc	netic induction- force on a c s circuital law – Magnetic vector ential–magnetic Flux-Magnetization alar potential and magnetic pole d	current ca r potential on –Magn ensity	rrying -magr netic f	con etic f ield p	ductor- field of produced	Biot-Sava a distant l by mag	art Law circuit– gnetized	CO2			
UNIT - III E	LECT	RODYNAMICS							Periods: 12			
Electromagneti Maxwell's equa Maxwell's equa	c Indu ations- ations -	ction-Faradays Law – The induce electrodynamics Before Maxwell -Magnetic charge Maxwell's equa	ed electric l – How N tions in m	field Iaxwe atter –	– Ene 11 fixe Bour	ergy in a ed Ampendary Co	magnetic ere's law onditions.	fields - -	СО3			
UNIT - IV E	LECT	ROMAGNETIC WAVES							Periods: 12			
Waves in one d The wave equat electromagnetic transmission at	limensi tion for c wave norma	on –Thewave equation – sinusoida E and B-Monochromatic plane w s– electromagnetic waves in Matte l incidence–absorption and dispers	al waves – vaves –ene er– propag sion –elec	Electr ergy an ation i tromag	omag id mo in line gnetic	netic wa mentum ear medi waves i	ives in va in a – reflec n conduc	cuum– ction and ctors.	CO4			
UNIT - V P	OTEN	TIALS AND FIELDS							Periods: 12			

7-8-0-

X2

The Potential formulation - Scalar and Vector Potentials- Gauge Transformation - Coulomb Gauge and Lorentz Gauge – Lorentz force law in potential form – continuous distributions – retarded potentials –Jefimenko's equations – point charge –Lienard-Wiechert potentials.							
Lecture Periods: 60	Tutorial Periods: 0	Practical Periods: -	Total Peri	ods : 60			
Text Books							
 SathyaPrakash, Electri B.B Laud, Electromag WazedMiah, Funda 	omagnetic Theory and Elect gnetics, New Age Internation mentals of Electromagnet	rrodynamics, Kedarnath Ramnath a nal Publisher, 3 rd Edition, 2011. ics, Tata McGraw Hill, 2 nd Editi	nd Co, 1 st Edition on, 1992.	, 2019.			
Reference Books							
 J.D. Jackson, Classica Narayanarao, Basic E D.J. Griffiths, Introd 	l Electrodynamics, Wiley E lectromagnetics with Applic luction to Electrodynamic	astern Limited, 2 nd Edition, 1993. ation, (EEE) Prentice Hall, 1997. s, Prentice-Hall of India, New D	Delhi, 4 th Edition,	, 2017.			
Web References							
 https://ecee.colorado. http://www.clerkmaxy https://ocw.mit.edu/co 	edu/~bart/book/book/chapter wellfoundation.org/html/eleco purses/physics/8-311-electro	r1/ch1_3.htm ctromagnetic_theory.html magnetic-theory-spring-2004/					

<u> </u>		Progra	m Outcome	Program Specific Outcomes (PSOs)				
COS	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

Evaluation Method

		Conti	nuous Asses	sment Marks (End Semester		
Assessment	CAT 1	CAT 2	CAT 3	Assignment*	Attendance	Examination (ESE) Marks	Total Marks
	_						
Marks	5	5	5	5	5	75	100

7.8-0-

X2

Department	PHYS	PHYSICS Programme: M. Sc.Physics											
Semester	I	Course Category Code: DSE End Semester Exa Periods/Week Credit Maximu											
Course Code	A23	PPHE101	Per	riods/V	Veek	Credit		Maxin	num Marks				
	DIGIT			T	P	C	CAM	ESE	TM				
Course Name	DIGIT	AL ELECTRONICS PRINCIPLES	4	U	U	4	25	75	100				
Prerequisite	Basic u	inderstanding of diode, transistor o	peration)	~				•-				
	To pre	pare students to perform the analy	sis and d	lesign	of var	ious digi	tal electr	onic cire	cuits.				
Course	To und	derstand the concepts of transistors					<u> </u>						
Objectives	10 acc digital	quire the basic knowledge of digitation of the section of the sect	al logic l	evels a	and a	pplicatio	n of kno	wledge	to understand				
Objectives	To kno	o know the concepts of Combinational circuits.											
	To gai	by gain the knowledge between digital analog and analog to digital											
Course					<u></u>	0			BT Mapping				
Outcomes	On cor	mpletion of the course, the student	s will be	able t	0				(Highest Level)				
	CO1	cont outline semiconductor devices, examine the Analog and digital circuits and identify the states and working characteristics of circuits.											
	CO2	describe and discuss functional blo	ocks of A	nalog	and D	igital El	ectronics	•	К3				
	CO3	list and use the methods to exami	ne Analo	g and	digita	l circuit p	problems	•	К3				
	CO4	assess the limitations of Analog a solutions	nd Digit	al circ	uits a	nd recon	nmend th	e	КЗ				
	CO5	design and construct Analog and I	Digital ci	rcuits f	for de	mand.			К3				
UNIT-I	BAN	D THEORY OF SOLIDS							Periods: 12				
Semiconductor Semiconductor semiconductors junction - Zene	rs - Er – n-t s - Ma r diode	nergy band description of semicol ype semiconductor - p-type sem jority and minority carriers – pn j – Light Emitting (LED) Photo diode	nductors iconduct junction - Tunne	- Intrin or - C - Volt- I diode	isic s Charge ampe	emicond e on n-t ere chara	uctor - E ype and acteristics	Extrinsic p-type s of pn	CO1				
UNIT - II	SPEC	IAL DEVICES AND APPLICATION	S						Periods: 12				
Field E Voltage variat enhancement - controlled Rect	Effect 7 ble res - UniJu ifier (Se	Fransistors (FET) - Characteristics sistor (VVR) – Metal Oxide Se unction Transistor (UJT) characteris CR) characteristics.	s – para micondu stics – L	meter ictor (JJT as	FET MOS relax	as amp FET) – ation os	lifier – F Depletic cillator –	ET as on and Silicon	CO2				
UNIT - III	LINE	AR OPERATIONAL AMPLIFIER C	IRCUITS	5					Periods: 12				
OPAMP – Para offset voltage - (CMRR) - OP/ differentiator –	ameters - offset AMP – voltage	s – inverting and Non-inverting amp current – Power Supply Ripple Ra Sign and scale changer – adde follower – solving simultaneous lin	olifier – ç tio (PSR r, subtra ear equa	gain – R) – C ctor a tion.	Miller Comm nd av	effect – on Mode erager -	Virtual g Rejectio - integra	round – on Ratic tor and	CO3				
UNIT - IV	TRA	NSISTOR							Periods: 12				
Transis Collector (CC) stabilization - A part network –	stor - B mode AC loac hybrid	asic configurations – Common Bas - Transistor action - Relation betw I line, transistor biasing -Fixed bias 'h' parameter.	e (CB), een α, β s - Voltag	Comm and γ ge divid	on Er - DC der bi	nitter (CI Ioad line as – Tra	E) and Co e - DC b nsistor a	ommon ias and s a two	CO4				
UNIT - V	D/A	AND A / D CONVERTER							Periods: 12				
555 Timer bloc Locked Loops detector – volt DAC – Analog	ck diag (PLL): age co to Digit	gram - Monostable operation – A Basic principles – phase Detect Introlled oscillator (VCO). Weighted al converter – Stair case ADC– Suc	stable o tor- Ana d resistor ccessive	peratio log ph r D/A o approx	on – 3 ase o conve cimatio	Schmitt detector rter – 4t on ADC.	trigger. F – Digita bit R-2R	hase – I phase ladder	CO5				

7-8-0-

Lecture Periods: 60	Tutorial Periods: 0	Practical Periods: -	Total Periods : 60
Text Books			
1.Robert Boylestad and 7th edition.	Louis Nashelsky, "Electror	nic Devices and Circuit Theory	", Prentice Hall New Jersey,
2. Jacob Millman and C	hristos C. Halkias, "Microele	ectronics", 2nd edition, McGraw	Hill, New Delhi, 2009.
3.Victor P. Nelson, "D	igital logic circuit analysis a	nd design", Prentice Hall, 1995.	
Reference Books			
1. Anant Agarwal, Jeffi	ey H. Lang, "Foundation of	analog and digital circuits", Elsev	vier, 2005.
2. Daniel Adam Steck,	"Analog and Digital Electror	nics", 2017.	
3. Hubert Kaeslin, "Dig	tital Integrated Circuit Design	n", Cambridge University Press, 2	2003.
Web References			
1.https://www.electroni	cshub.org/analog-circuits-an	d-digital- Circuits	
2. https://www.allabout	circuits.com/video-tutorials/	analog-and-digital-electronics/	
3. https://www.ece.utor	onto.ca/prospective-students	/curriculum-streams/digital-analo	og

<u> </u>		Progra	m Outcome	Program Specific Outcomes (PSOs)				
COS	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

Evaluation Method

		Conti	nuous Asses	sment Marks (End Semester		
Assessment	CAT 1	CAT 2	CAT 3	Assignment*	Attendance	Examination (ESE) Marks	Total Marks
Marks	5	5	5	5	5	75	100

7.8-0-

X2

Department	PHYS	HYSICS Programme: M. Sc.Physics											
Semester	I		Course C	Catego	ry Co	de: DSE	End Sem	ester Exa	am Type: TE	:			
Course Code	A 32E	A23PPHE102 Periods/Week Credit Maximu											
course coue	А23Г		L	Т	Р	C	CAM	ESE	TM				
Course Name	INST	TRUMENTATION	4	0	0	4	25	75	100				
D	Fundar	nentals of sensors and transducers	s, divider a	and br	idge c	ircuits, (op-amp c	ircuits in					
Prerequisite	instrun	nentation											
	To und	erstand the types of transducer for	a particula	ar mea	surem	nent.							
	To dev	elop knowledge in digital, analytic	al and bio	medic	al inst	ruments	s for diffe	rent app	lications.				
Course	To und	erstand the principle and working	of analytic	al inst	rume	nts.							
Objectives	To kno	w the functioning of medical imag	ing instrur	nents									
	To hav	e idea about measurement of physi	ological p	arame	ters.								
Course E													
Outcomes Of completion of the course, the students will be able to													
CO1 Understand the types of transducer for a particular measurement.													
	CO2	Test and use the digital instrumen	ts for diffe	erent a	pplica	ations.			К3				
	CO3	Understand the various analytical	and biom	edical	instru	mentati	on and th	eir uses	К3				
	CO4	4 Know the functioning of medical imaging instruments.											
	CO5	Understand the measurement of P	hysiologic	cal Par	amete	ers.			К3				
UNIT-I	TRAN	ISDUCERS							Periods: 1	12			
Basic function	nal elen	nents of measuring system-Transd	ucers: Def	initio	n-Part	s-Classi	fication-	Types of					
primary sensii	ng elem	ent. LVDT: Principle –Working –I	Measurem	ent of	displa	acement	. Electric	al Strain	CO1				
Gauge: Princi	iple-The	eory-Types-Working -Measuremen	nt of Forc	e (or)	Pres	sure. Ca	apacitive		COI				
Transducers: 1	Principl	e-Types-Working-Measurement of	f linear and	l angu	lar di	splacem	ent.						
UNIT - II	DIGIT	AL INSTRUMENTATION							Periods: 1	12			
Principle, blo	ock dia	gram and working of Digital M	Iultimeter	, Dig	ital F	requenc	y counte	er,	CO2				
	ANA	LYTICAL INSTRUMENTA	TION	loscop	e and	Q-mete	1.						
····									Periods: 1	12			
Principle, wo (Inductively c and AFM (Ate	orking, coupled omic Fo	Instrumentation and application plasma-Atomic emission spectros prce Microscopy).	s of UV scopy), SH	'-Vis EM (S	Spect canni	rophoto ng Elec	ometer, I tron Mic	CPAES, roscope)	CO3				
UNIT - IV	MEAS	UREMENT OF PHYSIOLOGIC	CAL PAR	AME	TERS	5			Periods: 1	12			
Magnetic Re	sonanc	e Imaging: Principle-Magnetic 1	resonance	phen	omer	na-Mag	netic res	onance					
imaging-Ima Construction mode- B mode-	ging pr n of an de- M r	ocess-Instrumentation. Ultrasor ultrasonic transducer-Ultrasoni node-TM mode.	nic Imagin c propaga	ng Sy ation t	stem: hroug	Princip gh tissu	ole- es-Displ	ay-A	CO4				
UNIT - V	MEAS	UREMENT OF PHYSIOLOGIC	CAL PAR	AME	TERS	5			Periods: 1	12			
Blood Pressure Measurement-Introduction-Direct Measurement using Catheters Advance of Direct Method-Indirect Method-Oscillometric measurement method. Electromagnetic Blood Flow Meters- Ultrasonic Blood Flow Meter-transit time method. Doppler Effect based ultrasonic blood flow meter.									CO5				

7-8-0-

Lecture Periods: 60	Tutorial Periods: 0	Practical Periods: -	Total Periods : 60
Text Books			
1. A.K.Sawhney, A DhanpathRai and Co.	course in Electrical, Pvt., Ltd., 2000.	and Electronics Mea	asurement and Instrumentation
2. Dr.Rajendra Prasa 2012	d, Electronic Measurements	s and Instrumentation,	Khanna Publishers, 4 th Edition
3. M.Arumugam, Biome	dical Instrumentation, Anurad	ha Publishers, 2001.	
Reference Books			
 Willard.D. Merritet.al R.S.Khandpur, Hand S.K.Venkata Ram, Bi 2001. 	Instrumental methods of anal Book of Biomedical Instrumen omedical Electronics and Ir	ysis, CBS Publishers, 7 th Ec tation, TMH, 3 rd Edition, 20 istrumentation, Galgotia F	lition, 2004. 007. Publications Pvt. Ltd., 3 rd Edition,
Web References			
 https://www.sciencedi https://revistaeduweb. 	rect.com/topics/engineering/pl org/index.php/eduweb/article/	hysiological-parameter view/397	

3. https://www.nanoscience.com/techniques/scanning-electron-microscopy

COs/POs/PSOs Mapping

<u> </u>		Progra	m Outcome	Program Specific Outcomes (PSOs)				
cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

Evaluation Method

		Conti	nuous Asses	ssment Marks (End Semester			
Assessment	CAT 1	CAT 2	CAT 3	Assignment*	Attendance	Examination (ESE) Marks	Total Marks	
Marks	5	5	5	5	5	75	100	

7.8-0-

X2

Departmen	PHYSICS Programme: M. Sc.Physics												
Semester	I	Course C	Catego	ry Coo	de: DSE	End Sem	ester Exa	am Type: TE					
Course Cod		Per	iods/V	Veek	Credit		Maxim	um Marks					
Course Cou		L	Т	Р	C	CAM	ESE	TM					
Course Nan	ne PHYSICS OF NANOMATERIALS	4	0	0	4	25	75	100					
Prerequisite	knowledge of physics, chemistry, materi	al science,	and b	iology	7								
	To impart the basic knowledge on the exotic	properties	of nano	o-struc	tured ma	terials.							
	To acquire the knowledge on various nano-	particles pro	ocess n	nethod	s and the	eir skills. a	and to stu	dy the reactive					
Course	merits of various process techniques												
Objective	5 To understand the various characterization to	echniques a	nd adv	antage	s.								
	To understand the Properties of Nanomateria	al's											
	To teach the applications of nanomaterials in	n various fie	elds										
Course On completion of the course, the students will be able to													
Outcomes													
CO1 Gain knowledge on the synthesis of Nanomaterials and their merits.													
	CO2 Students would gain perception of	characteriz	tation	techni	ques.			К3					
	CO3 Understand the differentiate quantu	ım structur	es and	its co	onfinem	ent pheno	omena.	К3					
	CO4 Understanding of optical and Electron	ron transpo	ort pro	pertie	s of nan	omateria	ls.	К3					
	CO5 Gain Knowledge on wide Applicat	ions of Na	no ma	terials				К3					
UNIT-I	NANOSCALE SYSTEMS							Periods: 1					
(nanocrystal nanoscale - 2D, 1D and	s, thin films and nanowires) - Band str Size Effects in nano systems - Quantum c ts consequences.	ucture and onfinemer	dens d dens t: part	ity of ticle in	f states n a box	of mate - carrier	erials at s in 3D,	C01					
UNIT - II	SYNTHESIS OF NANOSTRUCTURE N	ATERIA	LS					Periods: 1					
Top down a lithographic deposition (1 Laser deposition - Hydrothern	nd Bottom up approach - Introduction to M techniques - Ball milling - Gas phase cond PVD): Thermal evaporation - E-beam evap tion- Chemical methods: Chemical vapor d nal synthesis - Colloidal methods.	Aicroelectulensation - oration - I leposition	conics Vacuu DC/RF (CVD)	- Moo um de ' magr) - Sol	pre's lav position netron s -Gel - H	w - impo n - Physic puttering Electro de	rtance of cal vapor - Pulsed position	CO2					
UNIT - III	CHARACTERIZATION							Periods: 1					
Field Emissi Auger Elect Electron Mic Atomic Forc	on Scanning Electron Microscopy (FESEM ron Spectroscopy (AES) - Energy Dispers croscopy (TEM) - Scanning probe Microsc e Microscopy (AFM) - Scanning Near filed	1) – X-ray sive x-ray opy: Scan l optical m	photo spectr ning T icrosc	electr oscop Junnel opy (S	on spec by (EDS ing Mic SNOM)	troscopy 5) - Trans croscopy	(XPS) – smission (STM) -	CO3					
UNIT - IV PROPERTIES													
Radiative pr properties o particles and Carrier trans Thermionic	ocesses: General formalization – absorption f hetero structures and nanostructures - Co excitons- Excitons in semiconductors - Pla port in low- dimensional systems (LDS) - C emission - tunneling and hoping conductivi	n - emissic oulomb in ismonics - Coulomb b ty Quantu	on and teracti Surfac lockad n Hall	lumin on in ce Plas le effe effec	nescence nanosti smon Re ct - SET t-topolo	e - Optica cuctures esonance f phenom gical insu	al - Quasi- (SPR). iena - ulators.	CO4					
UNIT - V	APPLICATIONS				I.	<u> </u>		Periods: 1					
Applications electron dev	of nanoparticles, nanowires and thin films ices – Nanoelectronics.	s for LED,	Laser	Diod	e and so	olar cells	- Single	CO5					

7-8-0-

X2

Lecture Periods: 60	Tutorial Periods: 0	Practical Periods: -	Total Periods : 60
Text Books			
1. Charles P. Poole, Jr.	and F. J. Owens, Introductio	on to Nanotechnology, John Wiley & Sons, 2	.007.
2. S. K. Kulkarni, Nano	otechnology: Principles & Pr	actices, Wiley, Capital Publishing Company	y, 3 rd Edition, 2011.
3. K.K. Chattopadhyay	and A. N. Banerjee, Introd	duction to Nanoscience and Technology, F	PHI Learning Pvt. Lmt.
Reference Books			
1. John H. Davies, The	e principles of low-dimensio	onal semiconductors an introduction, Camb	ridge University Press,
1 st Edition, 1998.			с .
2. Paul Harrison, Quar	ntum Wells, Wires and Dots	: Theoretical and Computational Physics of	Semiconductor
Nanostructures, John W	Viley & Sons, 2 nd Edition, 200	05.	
3. P.J. Good hew, J.Hu	mphreys, R.Beanland, Elect	ron Microscopy and Analysis, 3 rd Edition,	CRC Press Taylor
and Francis, 2001.			
Web References			
1 https://www.oreilly.co sub13.1.xhtml	om/library/view/engineering	physics/9788131775073/xhtml/ch13-	

2. https://www.news-medical.net/life-sciences/Properties-of-Nanoparticles.aspx

COs/POs/PSOs Mapping

<u> </u>		Progra	m Outcome	Program Specific Outcomes (PSOs)				
COS	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

Evaluation Method

		Contir	nuous Asses	sment Marks (CAM)	End Semester		
Assessment	CAT 1	CAT 2 CAT 3		Assignment*	Attendance	Examination (ESE) Marks	Total Marks	
Marks	5	5	5	5	5	75	100	

7.8-0-

X2

Department	PHY	SICS	Program	me: M .	Sc.Pl	nysics							
Semester	I		Course C	ategor	y Cod	e: DSC	End Sem	ester Exa	m Type: PE				
Course Code	Δ23	A23PPHL101 T D C CAM FEE											
	~~~		L	Τ	Р	С	CAM	ESE	TM				
Course Name	GEN	IERAL PRACTICAL – I ``	0	0	4	2	50	50	100				
Prerequisite	Basics	s of Physics experiments											
	To Ac	equire strong laboratory skills.											
_	To pr	ovide a practical understanding o	of some of t	he con	cepts	learnt i	n the theo	ory course	on Physics.				
Course	To ev	aluate the process and outcomes	of an expe	riment	quant	itativel	y and qua	litatively.					
Objectives	To in	culcate strong laboratory skills.				of Dha							
Course	10 m	ake the students gain a practical l	knowledge	in the	Dasics	s of Phy	sics.		DT Manada				
Outcomes	On co	mpletion of the course, the stud	lents will b	e able	to				BT Mapping (Highest Level)				
	CO1Understand the concepts behind various physics experiments.K3CO2Understand the basics of experimental physicsK2												
	CO2	Understand the basics of experir	nental phys	sics				-	К3				
	<b>CO3</b> Explore the concepts involved in the thermodynamics, heat and modern optics												
	CO4	Create the knowledge of theories involved in physics using practical experiments											
	<b>CO5</b> Enhance the skill to meet the present-day requirements in industries, researchfields												
		(Choose any 8 experim	nents from	the lis	st giv	en belo	w)						
1. Dete	rmina	tion of Stephan's constant.											
2. Youn	ig's IVI	odulus by elliptical fringes.											
3. Youn	ig's Mo	odulus by hyperbolic fringes.											
4. Dete	rmina	tion of band gap in semicondu	uctor.										
5. Hydr	ogen s	spectrum – Rydberg's constan	t.										
6. Visco	osity of	f liquid – Meyer's disc.											
7. Spec	trome	ter - Specific charge of an elec	ctron.										
8. Fiber	[.] Optic	s Experiment.											
9. Ultra	sonic	diffraction.											
10. Lasei	r- Thic	kness of the enamel coating o	n a wire b	y diffr	actio	n.							
Lecture Periods	s: 0	Tutorial Periods: 0	Practical	Period	ls: 30			Total Pe	riods : 30				
Text Books													
1.C.C Ouseph,	V.J.Ra	o and V. Vijayendran "Practical I	Physics"										
2.M.N. Srinivasa	an "Pra	ctical Physics", Sultan son Pub.											
3.D P Khandelw	/al, "La	boratory Manual of Physics" for	UG classes	(Vani	Pub.	House,	New Del	hi)					
Reference Boc	oks												
1. V Y Rajopad	lhye an	d V L Purohit, Text book of expe	rimental Ph	nysics									
2.C.C Ouseph,	V.J.Ra	o and V.Vijayendran "Practical F	hysics"										
Web Referenc	es												

7-8-0-



1. https://www.tvu.edu.in/wp-content/uploads/2017/06/B-Sc-Physics.pdf

2.https://www.physics.louisville.edu/cldavis/phys298/notes/torpend.html

# COs/POs/PSOs Mapping

<b>60</b> 2		Progra	m Outcome	Program Specific Outcomes (PSOs)				
PO1	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

## **Evaluation Method**

	Conti	nuous Assessme	CAM)	End Semester	Total		
Assessment	Observation	Model Exam Viva Voce		Attendance	Examination (ESE) Marks	Marks	
Marks	15	15	10	10	50	100	

7.8-0-



Department	PHYS	IYSICS Programme: M. Sc. Physics											
Semester	I	Course Category Code: DSC End Semester Exam Type: PE											
Course Code	Δ23	РРНІ 102	Peric	ods/W	/eek	Credit		Maxim	um Marks				
			L	T	P	C	CAM	ESE	TM				
Course Name	ELE	CTRONICS PRACTICAL – I	0	0	4	2	50	50	100				
Prerequisite	Basics	s of Physics experiments											
	To pro	ovide a practical understanding of	some of the	e conc	epts 1	earnt in	the theor	y course	on Physics.				
	To eva	aluate the process and outcomes o	f an experir	nent c	luanti	tatively	and qual	itatively.					
Course	To giv	ve hands on training in the constru	ction of sin	ple el	lectro	nic circi	11ts.						
Objectives	To inc	culcate strong laboratory skills.	owladga in	tha h	osios	of Dhue	00						
Courso	Course BT Manning												
Outcomes	n com	pletion of the course, the student	s will be ab	le to					(Highest Level)				
<b>CO1</b> Understand the concepts behind various physics experiments.													
CO2 Understand the basics of experimental physics													
	<b>CO3</b> Explore the concepts involved in the thermodynamics, heat and modern optics												
	<b>CO4</b> Create the knowledge of theories involved in physics using practical experiments												
	<b>CO5</b> Enhance the skill to meet the present day requirements in industries, research fields												
1. FET 2. UJT 3. Desi 4. Desi 5. Desi 6. Con 5. Desi 7. Desi 8. Desi 9. Desi 10. Op-a diffe	Charac charac gn of a gn full gn full struct llation gn an gn 4 b gn mu amp – erence	cteristics and amplifier design cteristics and applications a Regulated Power Supply using adder and full subtractor and adder and full subtractor and a stable multivibrator using tra astable multivibrator using 555 it shift register using JK Flip flo Itiplexer/demultiplexer. Inverting, non-inverting amp ,average amplifier – differentia	g IC7805. verify its tr verify its tr ansistor an 5 timer. p. lifier – Vo ator and in	ruth t ruth t d to d ltage tegra	able able deter follo tor.	using N using N mine th wer- su	AND log OR logic ne freque	ic gates. gates. ency of					
Lecture Period Text Books	s: 0	Tutorial Periods: 0	Practical	Perio	ds: 30			Total Pe	eriods : 30				
	nh V I	Rao and V. Vijavendran "Practice	al Physics"										
2.M.N. Sriniv	vasan "	Practical Physics", Sultan son Put	).										
3.D P Khand	elwal,	"Laboratory Manual of Physics" fo	or UG classe	es ( Va	ani Pu	ıb. Hous	e, New I	Delhi)					
Reference Bo	oks												

7-8-0-

X2

1.V Y Rajopadhye and V L Purohit, Text book of experimental Physics

2.C.C Ouseph, V.J.Rao and V.Vijayendran "Practical Physics"

# Web References

1. https://www.tvu.edu.in/wp-content/uploads/2017/06/B-Sc-Physics.pdf

2. https://www.physics.louisville.edu/cldavis/phys298/notes/torpend.html

## COs/POs/PSOs Mapping

<u> </u>		Progra	m Outcome	Program Specific Outcomes (PSOs)				
PO1		PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

### **Evaluation Method**

	Conti	nuous Assessme	CAM)	End Semester	Total	
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks
Marks	15	15	10	10	50	100

7.8-0-

X2

Department	PHYSICS Programme: M. Sc. Physics										
Semester	I		Course Ca	ategor	y Cod	e: DSE	End Sem	ester Exa	am Type: <b>TE</b>		
Course Code	Δ23P	PHS101	Per	iods/V	Veek	Credit		Maxim	um Marks		
course coue			L	Τ	Р	С	CAM	ESE	TM		
Course Name	PROI	FESSIONAL SKILLS	0	0	4	2	100	-	100		
Prerequisite							•				
	To Enal	ole the students to understand th	e importar	nce of	Interp	ersonal	and Tear	n skills.			
	To Acq	uire Different Interpersonal and T	eam skills	to be a	an em	ployable	e person.				
Course	To know how to communicate in an emotionally intelligent way. To identify needed information and/or eliminate extraneous information towards solving										
Objectives											
	contextual problems.										
	To achi	eve the desired result of a good e	employabil	ity thro	ough 1	Feam wo	ork.				
Course Outcomes	On con	npletion of the course, the studer	nts will be	able to	)				BT Mapping (Highest Level)		
	CO1	CO1 Remember the various Interpersonal skill requirements in organizational entry K3									
	CO2	Understand t h e need for di at different occasions	fferent co	ommur	nicatio	on skill	require	ment	КЗ		
	CO3	Understand what Emotional Ir	ntelligence	e is an	d wh	y it is in	nportant		КЗ		
	CO4	Demonstrate a good Problem-so	olving skill i	n work	envii	ronmen	t		К3		
	CO5	Demonstrate their ability in tean	n work to a	achieve	e desi	red resu	lt		К3		
UNIT-I	INTRO	DOUCTION TO INTERPERS	SONAL S	SKILL	-				Periods: 6		
Introduction to Interpersonal S Factorsaffectir Interpersonal	o Interpe Skills – ng Interp relations	ersonal skills – definition – Import Types of Interpersonal relationshi personal Relationships – How to ac ships	tance of in ps – uses ccommoda	terpers of Inter te diffe	sonal rpersc rent s	skills - I onal rela tyles – c	Developir tionships conseque	ng Your skills – nces of	C01		
UNIT - II	соми	IUNICATION SKILLS							Periods: 6		
Introduction – communication	Mean n – Non	ing – Process of communicat – Verbal communication – Dealir	ion – To ng with Cor	ols fo nflict –	r cor Comr	nmunica nunicati	ation – on Barrie	Verbal rs.	CO2		
UNIT - III	EMO	TIONAL INTELLIGENCE							Periods: 6		
Emotional inte	lligence o relieve	e, emotional quotient, ability to unc e stress, empathy and resolving c	derstand, u onflict.	se ma	nage	own em	otions,		CO3		
UNIT - IV	NIT - IV PROBLEM SOLVING								Periods: 6		
Introduction – Stagesof prob	Need fo	or problem Solving – Skills for Pro ving – Methods of Problem solving	blem Solvi g	ng –Pi	OCESS	s of Prot	olem solv	ing –	CO4		
UNIT - V	TEAM	SPIRIT AND GROWTH							Periods: 6		

7-8-0-



Team spirit, growth mindset, high performing teams, trust and mind alignment, focus, target achievement and time compliance.							
Lecture Periods: 30	Tutorial Periods: 0	Practical Periods: -	Total Pe	riods : 30			
Text Books							
1. 1. Brooks, Margret.	. Skills for Success. Listening a	and speaking. Level 4 Oxford Univ	versity Press,				
Oxford: 2011.							
2. Richards, C. Jack. &	David Bholke. Speak Now Le	vel 3. Oxford University Press, Ox	ford: 2010				
Reference Books							
1. Bhatnagar, Nitin an	d MamtaBhatnagar. Commu	inicative English for Engineers an	d Professionals. P	earson: New			

Delhi, 2010.

2. Hughes, Glyn and Josephine Moate. Practical English Classroom. Oxford University Press:

Oxford, 2014.

3. Vargo, Mari. Speak Now Level 4. Oxford University Press: Oxford, 2013.

#### **Evaluation Method**

		Contir	Continuous Assessment Marks (CAM) End Semester						
Assessment	CAT 1	CAT 2	CAT 3	Assignment*	Attendance	Examination (ESE) Marks	Total Marks		
Marks		70		20	10	100	100		

7.8-0-

 $X^2$ 

Department	PHYS	PHYSICS Programme: M. Sc. Physics							
Semester	II		Course Ca	ategory	Code:	DSC	End Ser	nester Ex	kam Type: <b>TE</b>
Course Code	A23P	РНТ204	Periods/V	Veek	· <del>·</del>	Credit	Maxim	um Mark	S
	/ 201		L	Т	P	C	CAM	ESE	TM
Course Nam	e STAT	TISTICAL MECHANICS	4	0	0	4	25	75	100
Prerequisite	need	a superior high-level undergradu	ate educat	tion in p	physics	studie	d basic d	algebra	
	To unc	lerstand the concepts of various ense	embles and	quantum	n statist	tics in de	etail.		
	To un	derstand the Partition function							
Course	To kn	ow the concepts of independent p	particles						
Objectives	To learn the basic ideas and concepts of quantum statistics								
	To lea	rn thermodynamical behavior pro	operties						
Course Outcomes	On co	mpletion of the course, the stud	ents will b	e able t	<b>:</b> 0				BT Mapping (Highest Level)
	CO1	Study the nature of statistical m	nechanics						К3
	CO2	Understand the concepts of vari	ous ensem	bles					К3
	CO3	Study statistics of systems of ine	dependent	particle	es				К3
	CO4	Understand the concepts quantu	ım statistic	S					КЗ
	CO5		КЗ						
UNIT-I	Founda	ations Of Statistical Mechanics	•						Periods: 12
Phase space- theorem- Sta quantities- Bo paradox.	States itistical oltzmani	of a system- Micro canonical ens equilibrium- Relation between n entropy relation- Classical ide	semble- De statistical eal gas- E	and and Entropy	t state thermo of mi	s- Liou o dyna xing- (	wille's amical Gibb's		CO1
UNIT - II	Partitio	on Function:							Periods: 12
Ensemble-car Relation betw free energy –	nonical, een par Total er	Micro canonical and grand canon tition function and thermo dynam nergy – Enthalpy - Gibb's potentia	nical ensei iical quanti al – pressu	nbles - ties - E ire - spe	Partiti ntropy ecific h	ion fund – Heln heat CV	ction - nholtz ′.		CO2
UNIT - III	Statist	ics Of Systems of Independe	ent Parti	cles:					Periods: 12
Quantum pict applicability c Classical real mean speed,	ure – M f the th gas - root me	axwell Boltzmann, Bose Einstein ree distribution laws- MB ideal Maxwell's law of distribution of an square speed	n and Ferm gas - Equ velocities	ni Dirac Jipartitic – mos	statist on law st prot	tics - Li of ene bable s	mit of ergy - peed,		CO3
UNIT - IV	UNIT - IV Quantum Statistics:								Periods: 12
ldeal BE gas - Phonon gas degeneracy -	- Gas de - Einste Electror	egeneracy - BE condensation – I sin and Debye's models for speci n gas – Pauli's theory of paramag	Photon gas fic heat of gnetism - V	s - Plan solids. I Vhite dv	k's lav Ideal F varfs	v of rad D gas	liation - Gas		CO4
1 · · · · · · · · · · · · · · · · · · ·									

7-8-0-



Fluctuations in Energy, pressure, volume & enthalpy - density fluctuation- Correlation of	
space-time dependent fluctuation- Fluctuation dissipation theorem - Transport properties –	CO5
Boltzmann transport equation-Random walk- Brownian motion.	005

Lecture Periods: 60	Tutorial Periods: 0	Practical Periods: -	Total Periods : 60

## Text Books

- 1. Agarwal B.K. and Melvin Eisner, Statistical Mechanics, New Age International Publishers. 2015
- 2. Kerson Huang, Statistical Mechanics, Wiley Eastern Ltd. 1987
- 3. Gupta and Kumar, Elements of Statistical Mechanics, Meerut, Pragathi Prakasham 1995

## **Reference Books**

- 1. Gupta M. C, Statistical Thermodynamics, New Age International Publishers 1995
- Gopal ESR, Statistical Mechanics & Properties of Matter, The Macmillan Co. of IndiaLtd. 1976
- 3. Laud B.B, Fundamentals of statistical Mechanics, New Age International Publishers 1951

## Web References

- 1. <u>https://www.cambridge.org/core/elements/foundations-of-statistical-</u> mechanics/6413B95F18EFDD5259DDAEB90E388031
- 2. https://www.sciencedirect.com/topics/chemistry/partition-function
- https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Statistical_ Mechanics_(Styer)/06%3A_Quantal_Ideal_Gases/6.04%3A_Statistical_Mechanics_of_Independent_Identical _Particles

# COs/POs/PSOs Mapping

<b>CO</b> 2		Progra	m Outcome	Program Specific Outcomes (PSOs)				
PO1	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

#### **Evaluation Method**

		Contir	nuous Asses	ssment Marks (	End Semester		
Assessment	CAT 1	CAT 2	CAT 3	Assignment*	Attendance	Examination (ESE) Marks	Total Marks
Marks	5	5	5	5	5	75	100

78-0-

XZ

Departmen	t Pl	PHYSICS Programme: M. Sc.Physics							
Semester			Course	Catego	ry Co	de: DSE	End Sem	ester Ex	am Type: <b>TE</b>
Courso Cod	~ ^	23DDUT205	Periods/Week Credit					Maximum Marks	
		251111205	L	Т	Р	С	CAM	ESE	TM
Course Nan	ne M	athematical Physics II	4	0	0	4	25	75	100
Prerequisite	knc	<i>wwledge</i> of mathematics studied in UC	<u>J</u>						
	То	develop knowledge in mathematical	physics a	nd its ap	pplica	tions.			
_	То	develop expertise in mathematical te	chniques	required	d in p	hysics.			
Course	То	enhance problem solving skills.							
Objective	s To	enable students to formulate, interpre-	et and drav	w infere	ences	from m	athematic	cal soluti	on.
	То	teach the mathematical correlation occur	rred.						
Course Outcomes	On co	ompletion of the course, the student	s will be a	ble to					BT Mapping (Highest Level)
	CO1	Develop knowledge in mathematic	cal physics	and its	appl	ications.			К3
	CO2	Develop expertise in mathematical	l technique	es requi	red in	physics	8.		К3
	CO3	Use differential equations and spec	cial function	ons to s	olve 1	nathema	atical pro	blems	К3
	~~ ^	of interest in Physics.		1	·			1	
	CO4	solutions	erpret and	draw	intere	ences fro	om maine	ematical	К3
	CO5	Gain the knowledge about the Inte	gral transf	orms					КЗ
UNIT-I	DIFF	ERENTIAL EQUATIONS	C						Periods: 12
Homogeneou ordinary sec Frobenius m	us lin ond o ethods	ear equations of second order wit rder differential with variable coeff s – extended power series method for	h constan ficients an findicial e	t coeff d their quation	icient solut s.	ts and to ion by j	their solu power se	utions – ries and	C01
UNIT - II	SPEC	IAL FUNCTIONS –I							Periods: 12
Gamma and functions – Bessel polyn	l Beta Recur iomial	function– Legendre's differential rence relation –Rodrigue's formula s – Generating functions – Recurrence	equation –Orthogo ce relation	: Lege nality; Rodrig	ndre Besse gue's i	polynor el's diffe formula	nials Ge erential e – Orthog	nerating quation: gonality.	CO2
UNIT - III	PAR	TIAL DIFFERENTIAL EQUATI	ONS						Periods: 12
Solution of L cylindrical co wave equation	.aplac o-ordir on – T	e Differential Equation – Two-dimentates. Solution of heat flow equation ansverse vibrations of a stretched s	sional flow on in one tring.	of hea dimens	at in c sion -	artesian - Solutio	and on of		CO3
UNIT - IV	INTE	GRAL TRANSFORMS							Periods: 12
Fourier trans differential properties. In	sforms equati nverse	– cosine and sine transforms – Line on. Laplace transforms – Definitio Laplace transforms – Definition – P	arity theor on – Line roblems –	rem –Pa earity, Solutio	arseva shiftii on of o	al's theo ng and different	rem – sol change tial equat	lution of of scale ion.	CO4
UNIT - V	PROI	BABILITY AND STATISTICS							Periods: 12
Events - Sar variables – variable – G Poisson dist Median, Mo	nple S Distri Contin ributic de.	pace - Mathematical and Statistical bution function – Discrete randor uous distribution function –Mathe on - Normal distribution – Properti	definitions n variable matical ex es of norr	s of Pro e – Co xpectati nal dis	babili ontinu on a tribut	ty - Ran ous ran nd varia ion – N	ndom ndom ance- Iean,		CO5

7-8-0-



Lecture Periods: 60	Tutorial Periods: 0	Practical Periods: -	Total Periods : 60
Text Books			
1. Satya Prakash, Math	ematical Physics, Sultan Cha	und & Sons, 6 th Edition, 2014.	
2. B.D. Gupta, Mathem	atical Physics, Vikas Publish	ning House Pvt. Ltd, 6th Edition, 2	010.
3. B.S. Rajput, Mathem	natical Physics, PragatiPrakas	shan, 31 st Edition, 2019.	
4. P.K. Chattopadhyay,	Mathematical physics, Wile	y Eastern Limited, 1st Edition, 19	90.
Reference Books			
1. Charlie Harper, Intro	duction to Mathematical Phy	sics, Prentice Hall of India Pvt. I	Ltd, 2 nd Edition, 1993.
2. L.A. Pipes and L.R. 3 rd Edition, 2014.	Havevill, Applied Mathema	atics for Engineers and Physicists	s, McGraw Hill Publications Co
3. Murray R. Spigel, T	heory and Problems of Lapla	ace Transforms, Schaum's outline	e series, McGraw Hill, 4 th Editio
1986.			
4. L.A. Pipes and L.R.	Havevill, Applied Mathemat	ics for Engineers and Physicists,	3 rd Edition, McGraw Hill, 1971.
Web References			
1. http://www.math.pit	t.edu/~sparling/14/20141540	/20141540vectorspacesapril28.pd	lf
2. http://web.math.ucsb	edu/~jhateley/project/tensor	.pdf	
3. https://www.math.us	t.hk/~machas/differential-eq	uations.pdf	

00		Progra	m Outcome	Program Specific Outcomes (PSOs)				
COS	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

#### **Evaluation Method**

		Contir	nuous Asses	sment Marks (	CAM)	End Semester	
Assessment	CAT 1	CAT 2	CAT 3	3 Assignment* Attend		Examination (ESE) Marks	Total Marks
Marks	5	5	5	5	5	75	100

7.8-0-

X2

Departmen	nt PHYSICS Programme: M. Sc.Physics											
Semester		I	Course (	Catego	ry Co	de: DSE	End Sem	ester Exa	am Type: <b>T</b>	Έ		
Course Cod	Course Code A23PPHT206 Periods/Week Credit Maximu											
	C	~201111200	L	T	P	C	CAM	ESE	TM			
Course Nam	ne <b>(</b>	Juantum Mechanics - I	4	0	0	4	25	75	100			
Prerequisite	kı T	nowledge of mathematics and wave mec	chanics stu	died ir	ı UG			•				
	Т	o develop the physical principles	and the	mathe	matic	al back	ground	importar	it to quar	ntum		
~	m	echanical descriptions.	•	1	1							
Course	-	o describe the propagation of a particle	in a simp	le, one	-aime	ensional	potentia					
Objectives	S T	o formulate and solve the Schrodinger'	s equation	to ob	tain e	igenvect	tors and o	energies	for particle	: 1n a		
	th	ree-dimensional and spherically symm	etric potei	itials.	•	C		с . <b>!</b>	1			
	I	o explain the mathematical formalism	and the	signifi	icance	e of con	istants o	f motion	, and see	their		
	re	fation to fundamental symmetries in na				x7 ·	. 1	1 10/1/2 D	4 1 0			
	1	o discuss the Approximation methods I	ike pertur	bation	theor	y, Varia	tional an	d WKB 1	methods for	r		
Course	ы	iving the Semodinger equation.							BT Manni	ing		
Outcomes	On	completion of the course, the students	s will be a	ble to					(Highest Le	evel)		
	CO	L Demonstrates a clear understand	ing of the	e basic	c post	ulates o	of quant	um	К3			
		mechanics which serve to forma	lize the r	les of	f qua	ntum m	echanic	8				
	CO	2 Able to apply and analyse the Sc	chrodinge	r equa	tion	to solve	e one		КЗ			
		dimensional problems		- C		• 1 •	1.00	1				
	CO	-dimensional potentials	ger equati	ion foi	r part	icles in	differer	it three	КЗ			
	CO	4 Discuss the various represe	ntations,	spac	e ti	me sy	mmetri	es and	КЗ			
		formulations of time evolution	•	.1	1 0	•						
	CO	• Formulate and analyse the appro	ximation	meth	oas i	or vario	us quan	tum	КЗ			
UNIT-I	BAS	IC FORMALISM							Periods:	12		
Postulates	of	quantum mechanics- Schrodinger	equation equation	ns (]	Time	depen	dent an	d Tine				
independen	t)- e	xpectation value (problems) - oper	ators - of	perato	r alge	ebra –ei	igen val	ues and	CO1			
eigen func	tion	s of Operators-Hermitian operator	ors and	their	prop	erties	- simul	taneous	01			
measurabili	ty a	nd commutators (problems) - Uncer	rtainty pr	incipl	e for	operato	ors - Eh	renfest's				
theorem.												
UNIT - II	APP	LICATIONS OF SCHRODINGERF	EQUATIO	<b>)N- 0</b>	NE D	IMENS	SION		Periods:	12		
The free par	rticl	e- square well potential – rigid wall	s (proble	ms)- f	inite	walls-	potentia	l barrier				
- barrier pe	netr	ation – alpha emission - simple ha	rmonic o	scilla	tor –	Schrod	inger M	lethod -	CO2			
							ENGLO	.T				
	AP	PLICATIONS OF SCHRODINGER		ON- I			ENSIO	N	Periods:	12		
Simple harr $L^2$ and $L_z$ - particles - h	non par ydro	tic oscillator (problems) -orbital ang ticle moving in a spherically symm ogen atom	ular mon netric po	tential	n- Ei  - sys	gen val tem of	ue spect two int	rum for eracting	CO3			
UNIT - IV	GEN	VERAL FORMALISM							Periods:	12		

7.8-0-

27

Linear vector space - Hilbert space – Dirac's notation - Heisenberg's matrix representation of wave functions and operators -momentum representation-wave functions, operators and Schrödinger equation-parity and time reversal- quantum mechanical pictures - Schrödinger, Heisenberg and Interaction pictures.	CO4
UNIT - V APPROXIMATION METHODS	Periods: 12
Time-independent perturbation theory for non-degenerate and degenerate levels – Stark effect in hydrogen atom - Variation method – helium atom - WKB approximation - bound states in a potential well-application to simple harmonic oscillator.	CO5
Lecture Periods: 60 Tutorial Periods: 0 Practical Periods: - Total Pe	riods : 60
<ol> <li>P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2nd edition (37th McGraw-Hill, New Delhi, 2010.</li> <li>David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 2011.</li> <li>Nouredine Zettili, Quantum mechanics concepts and applications, 2nd Edition, Wiley, New Reference Books</li> <li>E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New York, 1970.</li> <li>L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press, Oxford,</li> </ol>	Reprint), Tata Delhi,2017.

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

**Evaluation Method** 

		Contir	nuous Asses	sment Marks (	CAM)	End Semester		
Assessment	CAT 1	CAT 2	CAT 3	Assignment*	t* Attendance Examination (ES Marks		Total Marks	
Marks	5	5	5	5	5	75	100	

7.8-0-

X2

# DISCIPLINE SPECIFIC ELECTIVE

Department	PHYSICS	HYSICS Programme: M. Sc. Physics												
Semester	II	Course C	atego	ry Coo	de: DSE	End Sem	ester Exa	am Type: <b>TE</b>						
Course Code		Peri	ods/W	/eek	Credit		Maxim	um Marks						
		L	Т	Р	C	CAM	ESE	TM						
Course Nam	e ATMOSPHERIC PHYSICS	4	0	0	4	25	75	100						
Prerequisite	knowledge of Astronomical behavior stud	lied in UG												
	To understand basics of structure and	propertie	es of e	earth'	s atmos	phere								
	To interpret the various atmospheric	processes												
Course	To realize the fundamental science be	ehind the	weath	er ev	ents									
Objectives	To know the basic concepts of cloud Phy	vsics												
	To discuss the dynamics changes in atmo	osphere												
Course OutcomesOn completion of the course, the students will be able to														
	<b>CO1</b> Know the basics of earth's atmo	sphere						К3						
	<b>CO2</b> Analyze the general weather phe	enomena						КЗ						
	<b>CO3</b> Interpret the various extreme we	ather even	nts					КЗ						
	<b>CO4</b> Develop ideas of climate system	s and thei	r influ	lence	;			КЗ						
	<b>CO5</b> Understand the significance of	of atmos	pheric	e pro	cesses	and th	e laws	К3						
	governing them													
UNIT-I E	BASICS OF EARTH'S ATMOSPHERE							Periods: 12						
A Brief Surv of the Earth Various Co components	Vey of the Atmosphere: Chemical Com System - The Oceans - The Cryosph mponents of the Earth System in C - Solar Constant - Incoming and outgoi	position ere - The Climate - ng radiati	- Vert Terro The on of	ical s estria Hyd earth	tructure l Biosp rologic - Radia	e - Comj here - R Cycle ation Bu	oonents oles of and Its dget.	CO1						
UNIT - II A	ATMOSPHERIC THERMODYNAMIC	S - I					U	Periods: 12						
Gas Laws -V the Hypsom Law of The Concept of a	Virtual Temperature -The Hydrostatic l etric Equation - Thickness and Heights rmodynamics - Joule's Law - Specific in Air Parcel	Equation s of Cons Heats –	- Geo tant P Entha	poten ressu dpy -	tial - S re Surf Adiab	cale Hei aces - Ti atic Proc	ght and he First cesses -	CO2						
UNIT - III	ATMOSPHERIC THERMODYNAMI	CS - II						Periods: 12						
Water Vapo Absorption a - Absorptio Radiation in	or in Air - Moisture Parameters - La and Emission - Scattering by Air Molec n and Emission by Gas Molecules Cloud-Free Air - Vertical Profiles of R	atent Hea cules and - Absor Radiative	tts - Partic ption Heatir	Physeles - A and ang Ra	sics of Absorpt Emissi te.	Scatteri ion by P on of I	ng and articles nfrared	CO3						
UNIT - IV	CLOUD PHYSICS							Periods: 12						
Nucleation Classificatio Temperature Warm Cloud Condensatio	of Water Vapor Condensation, Theor n - terminal velocity - Microstructures e Cloud Liquid Water Content and Er ds : Growth by Condensation - Bridg n and Collision–Coalescence.	ry - Clou of Warm ntrainmen ging the (	id Co Clou t - Gi Gap b	nden ds - a rowth etwe	sation I and Wet of Clo en Droj	Nuclei - -Bulb P oud Droj olet Gro	Cloud otential plets in wth by	CO4						

7-8-0-



UNIT - V ATMOSPHERIC DYNAMICS	Periods: 12
The Effect of Friction - The Gradient Wind & The Thermal Wind - The Atmospheric General Circulation -The Kinetic Energy Cycle - Atmospheric Boundary Layer and its structure - Estimation of Atmospheric Boundary Layer - Tropical Cyclones - Structure, Thermodynamics, and Dynamics.	CO5
Lecture Periods: 60 Tutorial Periods: 0 Practical Periods: - Total Period	riods : 60
Text Books	
<ol> <li>John M Wallace and Peter V Hobbs, Atmospheric Science – An introductory Survey, Geophysics Series, 2nd Edition 2006</li> <li>Murry L Salby, Fundamentals of Atmospheric Physics, International Geophysics Series, 2nd H</li> <li>Chandrasekhar, Basics of Atmospheric Science, PHI Learning Pvt Ltd, New Delhi, 2nd Edition</li> <li>Reference Books</li> <li>KshudiramSaha, The Earth's Atmosphere, Its Physics and Dynamics, Springer, 2nd Edition 2</li> <li>C. Donald Ahrens, Essentials of Meteorology: An invitation to the atmosphere, Cengage Edition 2010</li> </ol>	International Edition 1996 on 2010. 2008 Learning, 3 rd
3. John G. Harvey, Atmosphere and Ocean, the Artemis Press, 1 st Edition 1995.	
Web References	
1. https://en.wikipedia.org/wiki/Atmosphere	
2. https://weatherstationguide.com/measure-wind-speed/	
3. https://en.wikipedia.org/wiki/Thunderstor	

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
COS	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

#### **Evaluation Method**

		Contir	nuous Asses	sment Marks (	CAM)	End Semester	
Assessment	CAT 1	CAT 2	CAT 3	Assignment*	Attendance	Examination (ESE) Marks	Total Marks
Marks	5	5	5	5	5	75	100

7.8-0-

X2

Departmen	t Pl	HYSICS	Program	me: N	1. Sc.F	hysics				
Semester			Course C	Catego	ry Coo	de: DSE	End Sem	ester Exa	am Type: <b>TE</b>	:
Course Cod	Δ Δ	23PPHF205	Peri	iods/V	Veek	Credit		Maxim	um Marks	
		2311112203	L	Т	Р	C	CAM	ESE	TM	
Course Nan	ne <b>N(</b>	ON-LINEAR OPTICS	4	0	0	4	25	75	100	
Prerequisite	knc	wledge of Optics and spectroscopy stu	udied in U	G						
	То	describe the basic Physics of nonlinea	ar optics a	nd der	nonsti	rate diff	erent NL	O pheno	mena	
	То	analyze various types of nonlinearitie	es in optics	and i	ts app	lication	s.			
Course	То	study about third order nonlinearities	and Kerr	effect.						
Objective	^s To	understand the different kinds of scatt	tering pro	cesses						
To understand the stimulated scattering process										
Course OutcomesOn completion of the course, the students will be able to										
	CO1	Understand the principles of nonlin	ear optics						К3	
	CO2	Knowing the different nonlinear ph	enomena	and its	appli	cations.			К3	
	CO3	Apply the knowledge for third -harr susceptibility of materials	monic con	versio	n and	evaluat	e nonline	ear	КЗ	
	CO4	Explore about Raman scattering pro	ocess and i	its app	licatio	ons.			К3	
	CO5	Gain the knowledge about the scatte	ering by R	aman	effect				КЗ	
UNIT-I	INTR	ODUCTION TO NONLINEAR OF	PTICS						Periods:	12
Wave propageneration - matching - 7	gation - Seco Third I	in an anisotropic crystal – Polarizat and harmonic generation – Sum an armonic generation – bistability – sel	ion respon nd differe lf focusing	nse of ence f g.	mater reque	rials to ncy ger	light – H neration	larmonic – Phase	C01	
UNIT - II	NONI	LINEAR PROCESSES							Periods: 1	12
Propagation condition, Fi photon Abso	of E ber La orption	lectromagnetic Waves in Nonlinea asers, Stimulated Raman Scattering a is.	ar medium and Ramar	n, Sel 1 Lase	lf Foo rs, CA	cusing, ARS, Sa	Phase r turation a	natching and Two	CO2	
UNIT - III	THI	RD ORDER NONLINEARITIES							Periods: 1	12
Two photon Oscillator – Kerr effect –	proces Ampl photo	ss – Theory and experiment – Three p ifier – Stimulated Raman scattering prefractive, electron optic effects.	photon pro – Intensit	ocess F y depo	Parame enden	etric ger t refract	neration of the transformed to t	of light – x optical	CO3	
UNIT - IV	MUL	<b>FIPHOTON PROCESSES</b>							Periods: 2	12
Electro-optic Photorefract	effective ma	ets – Electro-optic modulators - Photesterials – Four wave mixing in Photor	otorefracti efractive r	ve ef nateria	fect - als.	Two b	eam cou	pling in	CO4	
UNIT - V	STIM	ULATED SCATTERING PROCE	SSES						Periods:	12
Stimulated s Raman effec Rayleigh.	catteri xt – St	ng processes – Stimulated Brillouin imulated Raman Scattering – Stokes	scattering – Anti-St	– Pha tokes	ase co Coupl	njugatio ing in S	on – Spoi SRS – Sti	ntaneous imulated	CO5	
Lecture Peri	ods: 6	0 Tutorial Periods: 0	Practica	l Perio	ods: -			Total Pe	riods : 60	

7.8-0-

42

## Text Books

- 1. Robert W. Boyd, Non-linear Optics, Academic Press, London, 5th Edition, 2008.
- 2. A. Yariv, Opto Electronics, John Wiley and Sons, New York, 3rd Edition, 1990.
- 3. B.B. Laud, Lasers and Nonlinear Optics, New Age International Pvt. Ltd., New Delhi, 3rd Edition, 2011.

## **Reference Books**

- 1. P.N.Butcher and D.Cotter, The Elements of Nonlinear Optics, CambridgeUniv. Press, New York, 1990.
- 2. YVGS Murthi and C. Vijayan, Essentials of Nonlinear Optics, Ane/Athena Books 1st Edition, 2014.
- 3. Y.R. Shen, The Principles of Nonlinear Optics, Wiley & Sons, New Jersey, 2003.

## Web References

1. https://onlinelibrary.wiley.com/doi/10.1002/9781118902332.refs.

- 2.https://www.polytechnique.edu/teaching-learning/en/catalog/online-course/nonlinear-optics
- 3. https://spie.org/education/courses/coursedetail/SC047?f=InCompany

#### **COs/POs/PSOs Mapping**

COs		Progra	m Outcome	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

#### **Evaluation Method**

		Contii	nuous Asses	sment Marks (	CAM)	End Semester		
Assessment	CAT 1	CAT 2	CAT 3 Assignment*		Attendance	Examination (ESE) Marks	Total Marks	
Marks	5	5	5	5	5	75	100	

7.8-0-

X2

Department	PHYSICS	Program	me: N	1. Sc.	Physics								
Semester	II Course Category Code: DSE End Semester Exam Type: <b>TE</b>												
	400DDUB000	Per	iods/W	Veek	Credit		Maxim	um Marks					
Course Code	AZ3PPHE206	L	Т	Р	C	CAM	ESE	TM					
Course Nam	e Microprocessor And Microcontroller	4	0	0	4	25	75	100					
Prerequisite	knowledge of basic electronic principles s	studied in	UG										
	To learn the architecture of 8085 microp	rocessor a	nd its	progra	amming	•							
	To study the architecture of 8086 microp	processor.											
Course	To familiarize the architecture of 8051 m	nicrocontr	oller a	nd its	progran	nming.							
Objectives	To study the interfacing devices of micro	oprocessoi	· 8085.		<u> </u>	Ŭ							
	To learn the concepts by using micropro	cessor											
Course Outcomes	On completion of the course, the students	s will be a	ble to					BT Mapping (Highest Level)					
	<b>CO1</b> Describe basic concept and archited	cture of 80	85 mi	cropro	ocessor.			КЗ					
	<b>CO2</b> Learn the architecture of 8086 micr	oprocesso	r.					К3					
	<b>CO3</b> Understand the architecture of 805 language programs.	l microcoi	ntrolle	r and o	develop	assembly	y	КЗ					
	<b>CO4</b> Discuss concept of interfacing in m	icroproces	ssor 80	85.				К3					
	<b>CO5</b> Understand the concepts of assemb	ling langu	age pr	ogran	nming			КЗ					
UNIT-I 🛛 🛚	MICROPROCESSOR ARCHITECTUR	E (8085 A	ND 8	086)				Periods: 12					
read & Memo Branching, a register orgar	ory write – Instruction Set: Instruction and nd Logical group operations - Interrupts nization– Addressing Modes – Interrupts –	l Data Foi s - Archit Hardware	mat, A tecture and S	Addres of 8 oftwa	ssing M 8086, Pi re.	odes, Ari n Config	ithmetic, guration,	CO1					
UNIT - II 🛛 I	PROGRAMMING OF MICROPROCES	SSOR						Periods: 12					
Instructions f arithmetic, lo Routines-Sub	or 8085 – Software development tools – A ogical, bit level instructions and branch oroutine – Flow charting – Loops –Program	ssembly l instructio ming and	anguag ns -In applic	ge pro terrup ations	grams v ots and s: Traffi	vith data interrupt c control	transfer, service system.	CO2					
UNIT - III	INTERFACING OF MICROPROCESS	SOR 8085						Periods: 12					
Basic concep ADC and DA communication (USART).	ts of programmable device - 8255 Program AC. 8257 Direct Memory Access (DMA) c on – interface of 8251 Universal Sync	nmable Pe ontroller. hronous	riphera Basic Asynch	al Inte conce rronou	erface (P pts of so us Rece	PI) – inte erial I/O eiver Tra	erface of and data insmitter	CO3					
UNIT - IV	MICRO-CONTROLLER							Periods: 12					
Introduction description or Port-Memory (Simple Arith	to 8-bit micro-controller, Architecture of f 8051-General Purpose and Special Funct organization and I/O addressing by 805 metic and Logical programs).	f 8051– H ion Regis 51, Interru	Hardwa ters- C ipts of	are fe Oscilla f 805	atures of tor and 1–Progra	of 8051 clock cir amming	– Signal cuit–I/O of 8051	CO4					
UNIT - V 8	8085 ASSEMBLY LANGUAGE PROGR	RAMMIN	G					Periods: 12					
Instruction see machine con counting and	et: Data transfer operations - Arithmetic C trol operations. Addressing modes. Wri indexing.Counters and time delays - Stack	Deprations ting assent - subrout	Logic nbly ine.	al ope langua	erations age pro	– Brancl grams: I	hing and Looping,	CO5					
Lecture Peric	ods: 60 Tutorial Periods: 0	Practica	l Perio	ods: -			Total Pe	riods : 60					

7.8-0-

XZ

### Text Books

1. Douglas V. Hall, Microprocessor interfacing, Programming and Hardware, Tata McGraw Hill, 2005.

2. V. Vijayendran, Fundamentals of Microprocessor-8085, S. Viswanathan Pvt. Lmt. 3rd Edition, 2005.

3. Kenneth J.Ayala, The 8051 Microcontroller – Architecture, Programming and Applications, Penram International Publishing (India) Pvt. Ltd, 2nd Edition, 1996.

4. Ramesh S. Gaonkar, Microprocessor Architecture, Programming and Applications with 8085/8080, New Age International 6th Edition, 2013.

#### Reference Books

1. B.B. Brey, The Intel Microprocessors 8086/8088, 80186, 80286, 80386 and 80486, Prentice-Hall of India, New Delhi, 3rd Edition, 1995.

2. J. Uffrenbeck, The 8086/8088, Family-Design, Programming and interfacing, software, hardware and applications, Prentice-Hall of India, New Delhi, 1994.

3. A.NagoorKani, Microprocessor and its applications, 1st Edition, RBA Pub., Chennai.

4. Muhammad Ali Mazidi, Janice Mazidi, The 8051 Microcontroller and Embedded systems, Pearson Education, 2nd Edition, 2005.

#### Web References

1. https://www.javatpoint.com/microprocessor-introduction

2. <u>https://www.tutorialspoint.com/microprocessor/microprocessor_overview</u>

3. https://gradeup.co/8085-microprocessor-i-98c6e670-c040-11e5-90e9-37a8af81db5e

#### COs/POs/PSOs Mapping

<u> </u>		Progra	m Outcome	s (POs)		Program S	pecific Outcor	nes (PSOs)
COs 1 1 2 3 4 5	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

#### **Evaluation Method**

		Contir	nuous Asses	sment Marks (	CAM)	End Semester	
Assessment	CAT 1	CAT 2	CAT 3	Assignment*	Attendance	Examination (ESE) Marks	Total Marks
Marks	5	5	5	5	5	75	100

78-0-

X2

Department	PHY	′SICS	Program	ne: <b>M</b>	. Sc.Pl	hysics					
Semester			Course Ca	ategor	y Cod	e: DSC	End Sem	ester Exa	m Type: <b>PE</b>		
	100		Peri	ods/W	/eek	Credit		Maximu	m Marks		
Course Code	AZ	SPPRL203	L	Т	P	C	CAM	ESE	TM		
Course Name	GEN	IERAL PRACTICAL — I	0	0	4	2	50	50	100		
Prerequisite	Basic	s of Physics experiments					-				
	To A	cquire strong laboratory skills.									
	To pr	ovide a practical understanding o	of some of t	he con	cepts	learnt i	n the theo	ory course	on Physics.		
Course	To ev	valuate the process and outcomes	of an exper	riment	quant	itativel	y and qua	litatively.			
Objectives	To in	culcate strong laboratory skills.									
	To m	ake the students gain a practical l	knowledge	in the	basics	s of Phy	sics.				
Course Outcomes	On co	n completion of the course, the students will be able to BT Mapping (Highest Level)									
	CO1	Understand the concepts behind	various phy	ysics e	xperii	ments.			К3		
	CO2	Understand the basics of experim	nental phys	ics					К3		
	CO3	Explore the concepts involved in	the thermo	odynar	nics, l	heat and	l modern	optics	К3		
	CO4	Create the knowledge of theories	s involved i	n phys	sics us	sing pra	ctical exp	eriments	К3		
	CO5	Enhance the skill to meet the private fields	present day	⁷ requi	ireme	nts in i	ndustries,	research	К3		
		(Choose any 8 experim	nents from	the lis	st giv	en belo	w)				
	MENT	S 11 C 1 1		.1 1							
I. Determ	ination	n of Young's modulus of glass by	Cornus M	ethod.		mathad					
2. Determ	ination	a of wavelength of more unit lamp	are by Emp		ringe	method	Proction or	oting			
4 Determ	ination	h of charge carrier density using I	Spectral III Hall Effect	ies usi	ng pia		action gr	atting			
5. Determ	inatio	n of laser diffraction at a straight	wire. Deter	minati	on of	Laser d	iffraction	at a circu	lar apertures		
and stue	dy of 1	aser beam parameter.									

- 6. Determination of Refractive index of liquids using He-Ne laser/diode laser.
- 7. Determination of beam spot size using He-Ne laser. Determination of focal length of a given lens using He-Ne laser.
- 8. Determination of linear absorption of coefficients of liquid using UV-Visible absorption spectrometer.
- 9. B-H curve using CRO.
- 10. Specific charge of an electron- J.J. Thomson's method.

Lecture Periods: 0	Tutorial Periods: 0	Practical Periods: 30	Total Periods : 30
Text Books			
1.C.C Ouseph, V.J.Ra	ao and V. Vijayendran "Pract	ical Physics"	
2.M.N. Srinivasan "Pra	actical Physics", Sultan son F	Pub.	
3.D P Khandelwal, "La	aboratory Manual of Physics"	for UG classes (Vani Pub. House, N	lew Delhi)
Reference Books			
1. V Y Rajopadhye a	and V L Purohit, Text book of	experimental Physics	
2.C.C Ouseph, V.J.	Rao and V.Vijayendran "Prac	ctical Physics"	
2	12-0-		Xt2

# Web References

1. https://www.tvu.edu.in/wp-content/uploads/2017/06/B-Sc-Physics.pdf

2.https://www.physics.louisville.edu/cldavis/phys298/notes/torpend.html

## COs/POs/PSOs Mapping

<u> </u>		Progra	m Outcome	s (POs)		Program S	pecific Outcor	nes (PSOs)
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

#### **Evaluation Method**

	Conti	nuous Assessme	CAM)	End Semester	Total	
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks
Marks	15	15	10	10	50	100

7.8-0-

X2

Department	PHYS	SICS	Program	me: <b>M</b> .	Sc.Pl	nysics							
Semester		Course Category Code: DSC End Semester Exam Type: <b>PE</b>											
Course Code	Δ23	Course Category Code: DSC     End Semester Example       V23PPHL204     Periods/Week     Credit     Maximu       L     T     P     C     CAM											
	~~~~		L	T	P	C	CAM	ESE	TM				
Course Name	ELEC	CTRONICS PRACTICAL – II	0	0	4	2	50	50	100				
Prerequisite	Basics	s of Physics experiments											
	To pro	ovide a practical understanding of	some of th	e conc	epts 1	earnt in	the theo	ry course	on Physics.				
_	To eva	aluate the process and outcomes o	f an experi	ment q	uanti	tatively	and qua	litatively.					
Course	To giv	ve hands on training in the constru	ction of si	nple el	ectro	nic circu	iits.						
Objectives	To inc	culcate strong laboratory skills.	11	1.	• • • •	- C Dl							
	lo ma	the the students gain a practical kr	nowledge 1	n the b	asics	of Physi	ICS.						
Course Outcomes	On cor	npletion of the course, the stude	nts will be	able to	0				BT Mapping (Highest Level)				
	CO1	Understand the concepts behind	various ph	ysics e	xperii	nents.			КЗ				
CO2Understand the basics of experimental physicsK3													
	CO3	Explore the concepts involved in the thermodynamics, heat and modern optics											
	CO4 Create the knowledge of theories involved in physics using practical K3												
	CO5	Enhance the skill to meet the p researchfields	resent-day	y requi	ireme	nts in ii	ndustries	, ,	К3				
		(Choose any 8 experim	ents from	the lis	st giv	en belo	w)						
	IMENT	S											
1. Alluli 2 Shift I	Register	r Ring counter Johnson counter i	ising I_K f	lin flor	os 747	6/7473							
$\frac{2}{3}$, $\frac{\text{Un}}{\text{D}}$	own Co	ounters using IC 7476/7473.	15111 <u>5</u> 5 11 1	np nor	5747	0/14/3.							
4. Digita	l to ana	log converter using IC 741-R/2R	ladder.										
5. BCD (counter	– decoding and display.											
6. Decod	lers and	lencoders											
7. Const	ruction	of two stage transistor amplifier.											
8. Design	n of mo	nostable multivibrator using IC 7	41 AND T	imer 5	55.								
9. Desig	n of Scl	midt Trigger using IC 741 and T	imer 555.	•									
10. Const	ruction	of Colpitts and Hartley oscillators	s using Tra	nsistor	•								
Lecture Period	ds: 0	Tutorial Periods: 0	Practical	Period	ds: 30			Total Pe	eriods : 30				
Text Books													
1. C.C Ouse	ph, V.J	.Rao and V. Vijayendran "Practica	al Physics"										
2.M.N. Sriniv	vasan "	Practical Physics", Sultan son Pul	о.										
3.D P Khano	delwal,	"Laboratory Manual of Physics" fo	or UG class	es (Va	ani Pu	ıb. Hous	e, New	Delhi)					
Reference Bo	oks			``````````````````````````````````````				,					
1.V Y Rajop	adhve a	and V L Purohit, Text book of expe	erimental F	hysics									
2.C.C Ouse	oh. V.J	Rao and V.Vijavendran "Practical	Physics"										
	, •		, 5.00										

7-8-0-

X2

Web References

- 1. https://www.tvu.edu.in/wp-content/uploads/2017/06/B-Sc-Physics.pdf
- 2. https://www.physics.louisville.edu/cldavis/phys298/notes/torpend.html

COs/POs/PSOs Mapping

COs PO1 1 2 2 2	Progra	m Outcome	s (POs)	Program Specific Outcomes (PSOs)				
COS	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	2	2	3	3	3	3	2	3
2	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	2	3
4	3	3	3	1	3	3	3	3
5	3	2	2	2	3	3	3	3

Correlation Level: 1: Low, 2: Moderate, 3: High

Evaluation Method

	Conti	nuous Assessme	nt Marks (C	CAM)	End Semester	Total
Assessment	Observation	Model Exam	Viva Voce	Attendance	Examination (ESE) Marks	Marks
Marks	15	5 15		10	50	100

7.8-0-

 X^2

Department	Mathematics	athematics Programme: M.Sc. Physics											
Semester	Second Semester	Course Cat	egory C	Code: SEC	*End S	Semester	Exam Typ	e:					
Course Code	A23PMAS201	Periods/We	ek		Credit	Ma	aximum Ma	arks					
		L	Т	Р	С	CAM	ESE	TM					
Course Name	QUANTITATIVE REASONING AND RESEARCH APTITUDE	2	0	0	2	100	-	100					
Prerequisite	Basic mathematical and reasoning know	wledge											
	 To know the simple interest ar 	nd compou	nd inter	rest.									
	To know the Permutation and Co	ombination.											
Course	To gain the knowledge of Time a	and Work Pr	oblems.	•									
Objectives	 To gain the knowledge the of p 	percentage	, profit	and loss.									
	To know the concept of coding a	nd decoding].										
	On completion of the course, the stud	ents will be	e able to	D			BT Mapp (Highest L	oing .evel)					
Course	CO1 Learn about the simple interest and compound interest. K3												
Outcome	CO2 Understand the Problems on Trai		K3										
	CO3 Solve the Time and Distance Pro	blems.					K3						
	CO4 Know about the ratio and proport	tion					K3						
	CO5 Understand the Alphanumeric set	ries.					K3						
UNIT-I						Pe	eriods: 6						
Simple interest	and Compound interest.							CO1					
UNIT-II						Pe	eriods: 6						
Permutations a	nd Combinations - Problems on Trains							CO2					
UNIT-III						Pe	eriods: 6						
Time and Work	Problems - Time and Distance Problems	•						CO3					
UNIT-IV						Pe	riods: 6						
Percentage-Pro	fit and Loss - Ratio and Proportion							CO4					
UNIT-V						Pe	riods: 6						
Input and Outpu	ut – Coding and Decoding – Alphanumeric	c series – Ra	anking					CO5					
Lecture Period	Is: 30 Tutorial Periods:-	Practic	al Peric	ods:-	Т	otal Peri	ods:30	1					
Reference Boo	bks				<u>.</u>								
1. Quantitativ	e Aptitude for competitive Examination-	AbhijitGuha	-TMH.										

2. Mathematics for life-M. Immaclate-Nanjil offsetPrinters.

3. Objective Arithmetic's-R. S-Aggarwal-S. Chand &Co.

Text Books

1. Quantitative Aptitude for competitive Examination, R.S. Aggarwal. S. Chand and company Ltd,152, Anna salai, Chennai.(2001)

2. Quantitative Aptitude and Reasoning Praveen PHIP.Ltd.

3. Scope and treatment as in "Quantitative Aptitude" by R.S. Aggarwal. S. Chand and company Ltd., Ram Nagar, New Delhi(2007).

7.8-0-

X2

Web References

- 1. https://www.careerbless.com/aptitude/qa/home.php
- 2. https://www.javatpoint.com/aptitude/quantitative
- 3. https://www.letsstudytogether.co/quantitative-aptitude-topic-wise-questions-and-answers-pdf-download/

Evaluation Method

ĺ	Assessment	Continuous Assessment Marks (CAM)					End Semester	Total
		CAT	CAT	CAT 3	Assignment*	Attendance	Examination (ESE) Marks	Marks
		1	2					
	Marks	70			20	10	-	100

7.8-0-

 X^2